Biomol. Chem., 2005, 3, 719; (f) B. List, Chem. Commun., 2006,
819; (g) B. List, Tetrahedron, 2006, 62, 243–502; (h) Organocata-
lysis in Organic Synthesis: T. Marcelli, J. H. van Maarseveen and
H. Hiemstra, Angew. Chem., Int. Ed., 2006, 45, 7496; (i) C. Palomo
and A. Mielgo, Angew. Chem., Int. Ed., 2006, 45, 7876.
2 (a) M. S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed., 2006,
45, 1520; (b) R. P. Herrera, V. Sgarzani, L. Bernardi and A. Ricci,
Angew. Chem., Int. Ed., 2005, 44, 6576; (c) S. H. McCooey and S. J.
Connon, Angew. Chem., Int. Ed., 2005, 44, 6367; (d) A. Berkessel,
F. Cleemann, S. Mukherjee, T. N. Muller and J. Lex, Angew.
Chem., Int. Ed., 2005, 44, 807; (e) T. P. Yoon and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2005, 44, 466; (f) M. S. Taylor and E. N.
Jacobsen, J. Am. Chem. Soc., 2004, 126, 10558; (g) A. G. Wenzel
and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964; (h) M. S.
Sigman, P. Vachal and E. N. Jacobsen, Angew. Chem., Int. Ed.,
2000, 39, 1279; (i) M. S. Sigman and E. N. Jacobsen, J. Am. Chem.
Soc., 1998, 120, 4901; (j) D. J. Maher and S. J. Connon, Tetra-
hedron Lett., 2004, 45, 1301; (k) Okino, T. Hoashi and Y. Take-
moto, Tetrahedron Lett., 2003, 44, 2817; (l) A. Wittkopp and P. R.
Schreiner, Chem.–Eur. J., 2003, 9, 407; (m) P. R. Schreiner and A.
Wittkopp, Org. Lett., 2002, 4, 217; (n) D. P. Curran and L. H.
Kou, Tetrahedron Lett., 1995, 36, 6647.
3 (a) S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701; (b) Y.
Takemoto, Org. Biomol. Chem., 2005, 30, 4299; (c) S. J. Connon,
Chem.–Eur. J., 2006, 12, 5418.
4 D. AlmaSi, D. A. Alonso and C. Najera, Tetrahedron: Asymmetry,
2007, 18, 299.
5 (a) S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed., 2005,
44, 6367; (b) J. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun.,
2005, 4481; (c) T. Okino, Y. Hoashi and Y. Takemoto, J. Am.
Chem. Soc., 2003, 125, 12672; (d) T. Okino, Y. Hoashi, T.
Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2005,
127, 119; (e) J. Lubkoll and H. Wennemers, Angew. Chem., Int.
Ed., 2007, 46, 6841.
Scheme 2 Asymmetric Michael addition of other diketones to
nitroolefin 4a catalyzed by 3d.
shown in Scheme 2, 1,3-diphenylpropane-1,3-dione gave the
desired product in 95% yield with 85% ee, which is the first
report using this diketone in this asymmetric Michael addi-
tion. Unsymmetrical 2-acetylcyclopentanone also worked well
to give the desired products with good diastereoselectivity
(85 : 15) and excellent enantioselectivty (96 and 90% ee for
the major and the minor diastereomer respectively) which is
comparable with the two best results reported in the
literature.5d,12
In order to evaluate the role of the multiple hydrogen
bonding donors played in this system, a control experiment
was carried out using 10 mol% 3e as catalyst (Scheme 1) in
which the sulfonamide NMeSO2Ts is methylated. In the
Michael addition of acetylacetone to 4a, the reaction became
sluggish and the corresponding product was formed in 80%
yield with only 68% ee even in 16 h. This indicates that the
third NH of sulfonamide on the 1,2-diphenylethenediamine
moiety indeed play a significant role in this Michael addition
reaction.13
6 Y. H. Liu, L. H. Chen and M. Shi, Adv. Synth. Catal., 2006, 348,
973.
7 Other kinds of organocatalysts having multiple hydrogen
bonding donors have already been developed, see: (a) R. P.
Herrera, V. Sgarzani, L. Bernardi and A. Ricci, Angew. Chem.,
Int. Ed., 2005, 44, 6576; (b) Y. Sohtome, A. Tanatani, Y.
Hashimoto and K. Nagasawa, Tetrahedron Lett., 2004, 45, 5589;
(c) A. Berkessel, K. Roland and J. M. Neudorfl, Org. Lett., 2006, 8,
4195.
8 The best results for asymmetric Michael addition of acetylacetone
to aryl nitroolefins were obtained with 10 mol% catalyst
loading (80% yield and 89% ee in 1 h), see ref. 5d, or 1 mol%
catalyst loading (87% yield and 95% ee in 26 h), see: J. Wang,
H. Li, W. Duan, L. Zu and W. Wang, Org. Lett., 2005, 7,
4713.
9 For organocatalytic transformations with catalyst loadings of less
than 1 mol%, see: (a) M. Rueping and A. P. Antonchick, T.
Theissmanna, Angew. Chem., Int. Ed., 2006, 45, 6751; (b) P.
Krattiger, R. Kovasy, J. D. Revell, S. Ivan and H. Wennemers,
Org. Lett., 2006, 8, 2901; (c) M. Terada, K. Machioka and K.
Sorimachi, Angew. Chem., Int. Ed., 2006, 45, 2254; (d) S. Shiraka-
wa, K. Yamamoto, M. Kitamura, T. Ooi and K. Maruoka, Angew.
Chem., Int. Ed., 2005, 44, 625; (e) M. Kitamura, S. Shirakawa and
K. Maruoka, Angew. Chem., Int. Ed., 2005, 44, 1549; (f) P. Vachal
and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 10012; (g) S.
Saaby, M. Bella and A. K. Jørgensen, J. Am. Chem. Soc., 2004,
126, 8120.
In conclusion, a new class of bifunctional amine-thiourea
catalysts bearing multiple hydrogen bonding donors was
synthesized and evaluated for their ability to catalyze the
Michael addition of acetylacetone to nitroolefins. We found
that multiple hydrogen bonding donors play a key role in
accelerating reactions, improving yields and improving enan-
tioselectivities. Further investigation of the efficacy of these
organocatalysts in other catalytic asymmetric reactions and
the design of new bifunctional catalysts bearing multiple
hydrogen bonding donors are ongoing in our lab and will be
reported in due course.
The authors thank Dr Wei-Liang Duan and Dr Bo Xu for
helpful discussions. This work is supported by the National
Natural Science Foundation of China (20642005) and the
start-up fund from Wuhan University.
10 C. L. Cao, M.-C. Ye, X.-L. Sun and Y. Tang, Org. Lett., 2006, 8,
2901.
11 Due to a lot of precipitate formed in the reaction mixture, this
reaction became a little sluggish under no solvent conditions.
12 H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman
and L. Deng, Angew. Chem., Int. Ed., 2005, 44, 105.
13 At present, we could not rule out the possibility that the sulfona-
mide proton facilitates the proton shift during the catalytic cycle,
see: G. Masson, C. Housseman and J. Zhu, Angew. Chem., Int. Ed.,
2007, 46, 4614.
Notes and references
1 (a) P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed., 2001,
40, 3726; (b) P. I. Dalko and L. Moisan, Acc. Chem. Res., 2004,
37, 487–631; (c) Special issue on organocatalysis: P. I. Dalko and
L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138; (d) A.
Berkessel and H. Groger, Asymmetric Organocatalysis: From
Biomimetic Concepts to Applications in Asymmetric Synthesis,
Wiley-VCH, Weinheim, 2004; (e) J. Seayad and B. List, Org.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 1431–1433 | 1433