Journal of the American Chemical Society
Page 4 of 5
Although acid activation on the amide carbonyl oxygen (i.e., IB)
is generally accepted, nitrogen-activation in geometrically con-
strained amides can also be possible. Our DFT calculations indi-
cated that the oxygen-activated form IB is more stable than the ni-
trogen-activated form IA, which is consistent with the general be-
lief.15 However, further calculations suggested that it is the less sta-
ble nitrogen-activated IA that leads to lower activation barrier.
Thus, in view of the rapid equilibrium between IA and IB, the Cur-
tin-Hammett principle applies.16 Therefore, we propose that our re-
action proceeds via nitrogen activation, in which the chiral catalyst
is located closer to the reaction center for better asymmetric induc-
tion. This is also consistent with the observed excellent stereocon-
trol even at high temperature. The corresponding catalytic cycle to-
gether with a qualitative energy diagram is depicted in Scheme 5.17
2007, 129, 8103. (h) Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu,
134, 8794. (l) Yang, D.; Wang, L.; Han, F.; Li, D.; Zhao, D.; Wang, R.
(4) Reviews on azetidines: (a) Couty, F.; Evano, G. Synlett, 2009,
3053. (b) Carreira, E. M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257. (c)
Rousseau, G.; Robin, S. in Modern Heterocyclic Chemistry; Alvarez-Builla,
J.; Vaquero, J. J.; Barluenga, J., Eds.; Wiley-VCH Verlag, 2011, 163. (d)
Brandi, A.; Cicchi, S.; Cordero, F. Chem. Rev. 2008, 108, 3988. (e) Bott, T.
(5) Selected examples of azetidine ring-opening or expansion, mostly
racemic or achiral: (a) Ishida, N.; Shimamoto, Y.; Yano, T.; Murakami, M.
Am. Chem. Soc. 2005, 127, 16366. With sulfur nucleophiles: (c) Hata, Y.;
Watanabe, M. Tetrahedron 1987, 43, 3881. (d) Jeziorna, A.; Heliński, J.;
J.; Krawiecka, B. Synthesis 2003, 288. (f) Jeziorna, A.; Krawiecka, B. Tet-
est, G.; Dang Thi, T. A.; Pham The, C.; Van Nguyen, T.; De Kimpe, N. J.
2013, 54, 2502.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, we have developed the first catalytic enantiose-
lective desymmetrization of azetidines. Despite the low propensity
of azetidine ring-opening and the significant challenge in stere-
ocontrol, the smooth intermolecular desymmetrization of a wide
range of 3-substituted azetidines has been achieved with both ex-
cellent efficiency and remarkable enantioselectivity, enabled by
optimal combination of catalyst, protective group, nucleophile, and
reaction conditions. Both tertiary and quaternary stereocenters can
be generated efficiently. The highly enantioenriched densely- and
diversely-functionalized products can be easily transformed to
other useful chiral building blocks. Mechanistically, although both
reaction partners could be activated by the catalyst, only one cata-
lyst molecule is involved in the bond-forming transition state ac-
cording to kinetic studies and DFT calculations. Finally, although
the carbonyl oxygen activation provides a more stable intermediate,
the reaction proceeds with lower overall barrier via nitrogen acti-
vation, which is consistent with the Curtin-Hammett principle and
the observed excellent stereocontrol. Further studies on other asym-
metric reactions of azetidines are underway.
(7) Representative reviews on chiral phosphoric acid catalysis, see: (a)
41, 31. (d) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
(e) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010, 291, 395.
(f) Terada, M. Synthesis 2010, 1929. (g) Yu, J.; Shi, F.; Gong, L.-Z. Acc.
Chem. Res. 2011, 44, 1156. (h) Parmar, D.; Sugiono, E.; Raja, S.; Rueping,
M. Chem. Rev. 2014, 114, 9047. (i) Zhu, C.; Saito, K.; Yamanaka, M.; Aki-
(8) Recent examples of enantioselective desymmetrizations catalyzed
by chiral phosphoric acids (see also ref 3a-c): (a) Mori, K.; Ichikawa, Y.;
2013, 135, 3964. (b) Monaco, M. R.; Prévost, S.; List, B. Angew. Chem.,
Soc. 2014, 136, 16982. (d) Meng, S.-S.; Liang, Y.; Cao, K.-S.; Zou, L.; Lin,
12249. (e) Gualtierotti, J.-B.; Pasche, D.; Wang, Q.; Zhu, J. Angew. Chem.,
Int. Ed. 2014, 53, 9926. For our efforts, see: (f) Chen, Z.; Wang, B.; Wang,
(10) For a review on 2-mercaptobenzothiazole, see: Lu, F.-L.; Hussein,
(11) Catalyst A4 was first reported by List and co-workers: Cheng, X.;
(12) (a) Dumas, J.; Brittelli, D.; Chen, J.; Dixon, B.; Hatoum-Mokdad,
1999, 9, 2531. (b) Seth, K.; Garg, S. K.; Kumar, R.; Purohit, P.; Meena, V.
2014, 5, 512.
(13) The amide carbonyl group in 7 could also be cleaved (see the SI).
(14) Heterodimers of chiral phosphoric acids have been proposed by
List and co-workers before. See ref 3c and 8b-c for examples.
(15) (a) Another computational study also indicated the favorable oxy-
gen protonation of N-formyl azetidine: Cho, S. J.; Cui, C.; Lee, J. Y.; Park,
J. K.; Suh, S. B.; Park, J.; Kim, B. H.; Kim, K. S. J. Org. Chem. 1997, 62,
4068. (b) We also obtained the X-ray structure of an azetidine substrate, in
which the amide dihedral angle is 17.6o (details in the SI), suggesting no
significant deviation of our azetidine substrates from ordinary amides in
terms of amide conformation.
ASSOCIATED CONTENT
Supporting Information Available
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
sunjw@ust.hk; chzlin@ust.hk
ACKNOWLEDGMENT
Financial support was provided by Hong Kong RGC (GRF-604513,
GRF-603313, M-HKUST607/12, and ECS-605812).
REFERENCES
(1) (a) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005,
248. (c) Díaz de Villegas, M. D.; Gálvez, J. A.; Etayo, P.; Badorrey, R.;
(3) Examples with Brønsted acid catalysis (a-d): (a) Rowland, E. B.;
129, 12084. (b) Larson, S. E.; Baso, J. C.; Li, G.; Antilla, J. C. Org. Lett.
2009, 11, 5186. (c) Monaco, M. R.; Poladura, B.; de Los Bernardos, M. D.;
(d) Nakamura, S.; Ohara, M.; Koyari, M.; Hayashi, M.; Hyodo, K.;
Nabisaheb, N. R.; Funahashi, Y. Org. Lett. 2014, 16, 4452. Lewis acid ca-
talysis and others (e-m): (e) Li, Z.; Fernández, M.; Jacobsen, E. N. Org. Lett.
1999, 1, 1611. (f) Mita, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai, M.; Shi-
(17) The free catalyst was determined to be the catalyst resting state.
ACS Paragon Plus Environment