Organic Letters
Letter
(11) Reviews on the synthesis of diaryliodonium salts: (a) Zhdankin,
V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (b) Merritt, E. A.;
Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052. (c) Dohi, T.;
Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775. (d) Yusubov, M. S.;
Svitich, D. Y.; Larkina, M. S.; Zhdankin, V. V. ARKIVOC 2013, 364.
(12) Examples of the synthesis of diaryliodonium salts via SEAr:
(a) Kitamura, T.; Matsuyuki, J.-i.; Nagata, K.; Furuki, R.; Taniguchi, H.
Synthesis 1992, 1992, 945. (b) Kitamura, T.; Matsuyuki, J.-i.;
Taniguchi, H. Synthesis 1994, 1994, 147. (c) Chun, J.-H.; Pike, V.
W. J. Org. Chem. 2012, 77, 1931. (d) Bielawski, M.; Malmgren, J.;
Pardo, L. M.; Wikmark, Y.; Olofsson, B. ChemistryOpen 2014, 3, 19.
(13) Examples of the in situ generation and subsequent nucleophilic
functionalization of diaryliodonium reagents: (a) Lubriks, D.;
Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134, 15436. (b) Sokolovs,
I.; Lubriks, D.; Suna, E. J. Am. Chem. Soc. 2014, 136, 6920. (c) Berzina,
B.; Sokolovs, I.; Suna, E. ACS Catal. 2015, 5, 7008. (d) Sokolovs, I.;
Suna, E. J. Org. Chem. 2016, 81, 371. (e) Reitti, M.; Villo, P.; Olofsson,
B. Angew. Chem. 2016, 128, 9074. (f) Kita, Y.; Morimoto, K.; Ito, M.;
Ogawa, C.; Goto, A.; Dohi, T. J. Am. Chem. Soc. 2009, 131, 1668.
(g) Morimoto, K.; Yamaoka, N.; Ogawa, C.; Nakae, T.; Fujioka, H.;
Dohi, T.; Kita, Y. Org. Lett. 2010, 12, 3804.
ACKNOWLEDGMENTS
■
This work was supported by Merck Sharp & Dohme, NIH
(R01EB021155) and DOE (DE-SC0012484). We thank
Drs. Idriss Bennacef, Thomas Graham, Eric Hostetler, Wenping
Li, James Mulhearn, and Petr Vachal from Merck for helpful
discussions.
REFERENCES
■
(1) (a) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev.
2008, 108, 1501. (b) Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem.
2008, 2008, 2853. (c) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D.
Angew. Chem., Int. Ed. 2008, 47, 8998. (d) Brooks, A. F.; Topczewski,
J. J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5,
4545. (e) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
(f) Preshlock, S.; Tredwell, M.; Gouverneur, V. Chem. Rev. 2016, 116,
719.
(2) (a) Sanford, M. S.; Scott, P. J. H. ACS Cent. Sci. 2016, 2, 128.
(b) Campbell, M. G.; Mercier, J.; Genicot, C.; Gouverneur, V.;
Hooker, J. M.; Ritter, T. Nat. Chem. 2017, 9, 1.
(14) (a) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org.
Lett. 2013, 15, 5134. (b) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford,
M. S. Organometallics 2014, 33, 5525.
(15) Crivello, J. V.; Lam, J. H. W. Macromolecules 1977, 10, 1307.
(16) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.;
(3) Recent examples of the nucleophilic radiofluorination of electron-
rich arenes: (a) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick,
M. E.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224.
(b) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.;
Scott, P. J. H. Org. Lett. 2016, 18, 5440. (c) Lee, E.; Kamlet, A. S.;
Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi,
D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639. (d) Lee, E.;
Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456.
(e) Hoover, A. J.; Lazari, M.; Ren, H.; Narayanam, M. K.; Murphy, J.
M.; van Dam, R. M.; Hooker, J. M.; Ritter, T. Organometallics 2016,
35, 1008. (f) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.;
Vallribera, A.; Ujaque, G.; Lledos
138, 12747.
́
, A.; Shafir, A. J. Am. Chem. Soc. 2016,
(17) (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc.
2008, 130, 8172. (b) Phipps, R. J.; Gaunt, M. J. Science 2009, 323,
1593. (c) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt,
M. J. J. Am. Chem. Soc. 2012, 134, 10773.
(18) Schimler, S. D.; Sanford, M. S. Synlett 2016, 27, 2279.
(19) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795.
(21) These conditions and others employing trifluoromethanesul-
fonic acid or trifluoroacetic anhydride for iodonium formation afforded
low RCCs and/or did not prove to be general.
(22) The RCC of isolated [4-MeOC6H4-I-Mes]OTf (2a) was also
improved to 85% with the addition of quinalidic acid (10 μmol) and
iPr2NEt (10 μmol). At this time, the role of quinaldic acid in the
radiofluorination is unknown.
́
Huiban, M.; Passchier, J.; Mercier, J.; Genicot, C.; Gouverneur, V.
Angew. Chem., Int. Ed. 2014, 53, 7751. (g) Preshlock, S.; Calderwood,
S.; Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.;
Wilson, T. C.; Taylor, N. J.; Cailly, T.; Schedler, M.; Collier, T. L.;
Passchier, J.; Smits, R.; Mollitor, J.; Hoepping, A.; Mueller, M.;
Genicot, C.; Mercier, J.; Gouverneur, V. Chem. Commun. 2016, 52,
8361. (h) Rotstein, B. H.; Stephenson, N. A.; Vasdev, N.; Liang, S. H.
Nat. Commun. 2014, 5, 4365. (i) Rotstein, B. H.; Wang, L.; Liu, R. Y.;
Patteson, J.; Kwan, E. E.; Vasdev, N.; Liang, S. H. Chem. Sci. 2016, 7,
4407. (j) Zlatopolskiy, B. D.; Zischler, J.; Krapf, P.; Zarrad, F.;
Urusova, E. A.; Kordys, E.; Endepols, H.; Neumaier, B. Chem. - Eur. J.
2015, 21, 5972. (k) Haskali, M. B.; Telu, S.; Lee, Y.-S.; Morse, C. L.;
Lu, S.; Pike, V. W. J. Org. Chem. 2016, 81, 297.
(23) The regioselectivity is set in the SEAr reaction and was
1
confirmed by H NMR spectroscopic analysis of the iodonium salts
generated under these conditions. See the SI for details.
(24) For consistency, step 1 was allowed to run for 18 h. However, in
many cases, the SEAr reaction was complete after a shorter time.
(25) In select examples, decreasing the amount of TMSOTf in the
first step helped to eliminate minor 18F-labeled byproducts believed to
originate from residual TMSOTf.
(26) The RCCs of 3l−o were lower due to formation of larger
amounts of [18F]fluoromesitylene and other unidentified [18F]
(27) A summary of unreactive or noncompatible arene substrates is
(4) (a) Phelps, M. E. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 9226.
(b) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
̈
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320.
(5) (a) Seidl, T. L.; Sundalam, S. K.; McCullough, B.; Stuart, D. R. J.
Org. Chem. 2016, 81, 1998. (b) Moon, B. S.; Kil, H. S.; Park, J. H.;
Kim, J. S.; Park, J.; Chi, D. Y.; Lee, B. C.; Kim, S. E. Org. Biomol. Chem.
2011, 9, 8346.
(6) Recent examples of C−H radiofluorination: (a) Huang, X.; Liu,
W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. J. Am.
(28) Kilbourn, M. R. Nucl. Med. Biol. 1989, 16, 681.
̌
Chem. Soc. 2014, 136, 6842. (b) Nodwell, M. B.; Yang, H.; Colovic,
M.; Yuan, Z.; Merkens, H.; Martin, R. E.; Benard, F.; Schaffer, P.;
Britton, R. J. Am. Chem. Soc. 2017, 139, 3595.
́
(29) In general, selectivity for 3 over 4 was greater than 95:5 in favor
of 3. The only exceptions were 3d, 3l, 3m, 3n, and 3o. See the
́
(7) Bergman, J.; Solin, O. Nucl. Med. Biol. 1997, 24, 677.
(8) Channing, M. A.; Musachio, J. L.; Kusmierz, J. J. Synthesis of 6-
[18F]Fluorodopamine (6-[18F]FDA). In Radiochemical Syntheses; Scott,
P. J. H., Hockley, B. G., Eds.; John Wiley & Sons: Hoboken, 2012; Vol.
1, pp 125−138.
(30) [18F]KF·18-crown-6·K2CO3 performed poorly as a [18F]fluoride
source for the automated reactions. Improved reactivity was obtained
using [18F]KF·18-crown-6·KOTf.
(9) Coenen, H. H. Fluorine-18 labeling methods: features and
possibilities of basic reactions. In PET Chemistry. Ernst Schering
Research Foundation Workshop; Schubiger, P. A., Lehmann, L., Friebe,
M., Eds; Springer: Berlin, 2007; Vol. 64, pp 15−50.
(10) Taylor, R. Electrophilic Aromatic Substitution; John Wiley &
Sons: Chichester, 1990.
D
Org. Lett. XXXX, XXX, XXX−XXX