S. Sugiyama et al. / Tetrahedron: Asymmetry 19 (2008) 401–406
405
(c) Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem. 1991,
56, 2489; (d) Walker, M. A.; Heathcock, C. H. J. Org. Chem.
1991, 56, 5747; (e) Denmark, S. E.; Stavenger, R. A. Acc.
Chem. Res. 2000, 33, 432; (f) Shirokawa, S.; Kamiyama, M.;
Nakamura, T.; Okada, M.; Nakazaki, A.; Hosokawa, S.;
Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604; (g) Kong,
K.; Romo, D. Org. Lett. 2006, 8, 2909.
Adducts 4 were converted to c-lactones 5 in the same
manner as described above in moderate to good overall
yields. The diastereomeric excess of all the c-lactones 5
was determined to be 83–99% by using HPLC with Chiralcel
OD, except for 5e and 5g. At present, the low diastereoselec-
tivities of 5e and 5g are still unexplained. However, all of the
enantiomeric excess of the c-lactones 5 from both the main
diastereomers and minor diastereomers was found to be
excellent. From these results, it can be concluded that in
these reactions, the facial selection of the 1-chlorovinyl
p-tolyl sulfoxides is perfect; however, facial selection of the
enolate of the esters is not good in some cases. It is also
worthwhile noting (as shown in the entries 7–10) that the
vicinal quaternary and tertiary carbon centers were con-
structed with high diastereo- and enantioselectivity by this
method.18
4. Some recent papers concerning this chemistry: (a) List, B.;
Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423; (b)
Berner, O. M.; Tebeschi, L.; Enders, D. Eur. J. Org. Chem.
2002, 1877; (c) Mase, N.; Thayumanavan, R.; Tanaka, F.;
Barbas, C. F., III Org. Lett. 2004, 6, 2527; (d) Cobb, A. J. A.;
Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun.
2004, 1808; (e) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc.
Chem. Res. 2004, 37, 580; (f) Mase, N.; Watanabe, K.; Yoda,
H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III J. Am. Chem.
Soc. 2006, 128, 4966; (g) Cao, C-L.; Ye, M-C.; Sun, X-L.;
Tang, Y. Org. Lett. 2006, 8, 2901; (h) Zu, L.; Wang, J.; Li, H.;
Wang, W. Org. Lett. 2006, 8, 3077; (i) Majima, K.; Tosaki, S.;
Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2005, 46, 5377.
5. Some recent papers concerning this chemistry: (a) Ahrendt,
K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 4243; (b) Jorgensen, K. A. Angew. Chem., Int. Ed.
2000, 39, 3558; (c) Motoyama, Y.; Koga, Y.; Nishiyama, H.
Tetrahedron 2001, 57, 853; (d) Corey, E. J. Angew. Chem., Int.
Ed. 2002, 41, 1651; (e) Gotoh, H.; Hayashi, Y. Org. Lett.
2007, 9, 2859.
3. Conclusion
In conclusion, we have reported an asymmetric synthesis of
optically active carboxylic acid derivatives with simulta-
neous construction of vicinal stereogenic centers at the a-
and b-position from (R)-(ꢀ)-chloromethyl p-tolyl sulfoxide
as a source of chirality. Unfortunately, in some cases (5e
and 5g), the diastereoselectivity was not satisfactory; how-
ever, the method described above contributes to the synthe-
sis of optically active esters having tertiary and/or
quaternary carbon stereogenic centers at the a- and b-
position.
6. (a) Ikeda, D.; Kawatsura, M.; Uenishi, J. Tetrahedron Lett.
2005, 46, 6663; (b) Kawatsura, M.; Ikeda, D.; Komatsu, Y.;
Mitani, K.; Tanaka, T.; Uenishi, J. Tetrahedron 2007, 63,
8815.
7. (a) Satoh, T.; Hayashi, Y.; Yamakawa, K. Bull. Chem. Soc.
Jpn. 1993, 66, 1866; (b) Satoh, T.; Kawashima, T.; Takahashi,
S.; Sakai, K. Tetrahedron 2003, 59, 9599.
8. Sugiyama, S.; Satoh, T. Tetrahedron: Asymmetry 2005, 16,
665.
9. Sugiyama, S.; Kido, M.; Satoh, T. Tetrahedron Lett. 2005, 46,
6771.
10. Satoh, T.; Ota, H. Tetrahedron 2000, 56, 5113.
11. (a) Satoh, T.; Sugiyama, S.; Ota, H. Tetrahedron Lett. 2002,
43, 3033; (b) Satoh, T.; Sugiyama, S.; Kamide, Y.; Ota, H.
Tetrahedron 2003, 59, 4327.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific
Research No. 19590018 from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, which is
gratefully acknowledged.
12. Sugiyama, S.; Shimizu, H.; Satoh, T. Tetrahedron Lett. 2006,
47, 8771.
13. (a) Ramaiah, M. Tetrahedron 1987, 43, 3541; (b) Satoh, T.;
Sato, T.; Oohara, T.; Yamakawa, K. J. Org. Chem. 1989, 54,
3973.
14. Mozingo, R. Org. Synth. 1965, Coll. Vol. 3, 181.
15. Brienne, par M. J.; Ouannes, C.; Jacques, J. Bull. Soc. Chim.
Fr. 1967, 2, 613.
References
1. Some monographs for the chemistry and synthesis of
carboxylic acids and their derivatives: (a) Patai, S. The
Chemistry of Carboxylic Acids and Esters; John Wiley and
Sons: London, 1969; (b) Zabicky, J. The Chemistry of Amides;
John Wiley and Sons: London, 1970; (c) Patai, S. The
Chemistry of Acid Derivatives; John Wiley and Sons: Chich-
ester, 1979, Part 1 and 2; (d) Comprehensive Organic
Chemistry; Sutherland, I. O., Ed.; Pergamon Press: Oxford,
1979; Vol. 2,, Part 9 (e)Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 6, pp 301–460, Part 1 and 2; (f) Patai, S. The
Chemistry of Acid Derivatives; John Wiley and Sons: Chich-
ester, 1992, Part 1 and 2.
2. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis:
Construction of Chiral Molecules Using Amino Acids; John
Wiley and Sons: New York, 1987.
3. (a) Heathcock, C. H. The Aldol Addition Reaction. In
Asymmetric Synthesis, Part B; Morrison, J. D., Ed.; Aca-
demic Press: Orland, 1984; Vol. 3, pp 111–212; (b) Lutomski,
K. A.; Meyers, A. I. Asymmetric Synthesis via Chiral
Oxazolines. In Asymmetric Synthesis, Part B; Morrison, J.
D., Ed.; Academic Press: Orland, 1984; Vol. 3, pp 213–274;
16. Ogata, S.; Masaoka, S.; Sakai, K.; Satoh, T. Tetrahedron
Lett. 2007, 48, 5017.
17. (a) Seebach, D.; Amstutz, R.; Laube, T.; Schweizer, W. B.;
Dunitz, J. D. J. Am. Chem. Soc. 1985, 107, 5403; (b) Ireland,
R. E.; Wipf, P.; Armstrong, J. D., III J. Org. Chem. 1991, 56,
650; (c) Tanaka, F.; Fuji, K. Tetrahedron Lett. 1992, 33, 7885;
(d) Otera, J.; Fujita, Y.; Fukuzumi, S. Synlett 1994, 213.
18. The synthesis of 5i is reported as a representative example for
this method. tert-Butyl 3-[chloro(p-tolylsulfinyl)methyl]-2,3-
dimethyl-5-phenylpentanoate 4i: tert-Butyl propionate
(0.12 mL; 0.80 mmol) was added to a solution of LDA
(0.80 mmol) in 2.5 mL of dry THF at ꢀ78 °C with stirring
under an argon atmosphere. The solution was stirred for
10 min, and a solution of 3e8 (50 mg; 0.16 mmol) in THF
(0.6 mL) was added. The reaction mixture was stirred for
10 min, and the reaction was quenched by adding saturated
aq NH4Cl. The whole was extracted with CHCl3 and the
organic layer was dried over MgSO4. The solvent was