A. Baldisserotto et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1849–1854
1853
Momose, I.; Umezawa, Y.; Hirosawa, S.; Iinuma, H.;
Ikeda, D. Bioorg. Med. Chem. Lett. 2005, 15, 1867; (g)
Vivier, M.; Jarrousse, A. S.; Bouchon, B.; Galmier, M. J.;
Auzeloux, P.; Sauzieres, J.; Madelmont, J. C. J. Med.
Chem. 2005, 48, 6731.
accordance with the hypothesis that this molecular frag-
ment can be considered the potential substrate for cata-
lytic threonine. In Figure 3, the docked ligand is
depicted in the active site.
5. (a) Marastoni, M.; Baldisserotto, A.; Cellini, S.; Gavioli,
R.; Tomatis, R. J. Med. Chem. 2005, 48, 5038; (b)
Marastoni, M.; Baldisserotto, A.; Trapella, C.; Gavioli,
R.; Tomatis, R. Bioorg. Med. Chem. Lett. 2006, 16, 3125;
(c) Marastoni, M.; Baldisserotto, A.; Trapella, C.; Gavioli,
R.; Tomatis, R. Eur. J. Med. Chem. 2006, 41, 978.
6. Baldisserotto, A.; Marastoni, M.; Trapella, C.; Gavioli,
R.; Ferretti, V.; Pretto, L.; Tomatis, R. Eur. J. Med.
Chem. 2007, 42, 586.
7. Borissenko, L.; Groll, M. Chem. Rev. 2007, 107, 687.
8. Baldisserotto, A.; Marastoni, M.; Lazzari, I.; Trapella, C.;
Gavioli, R.; Tomatis, R. Eur. J. Med. Chem. 2007, in
press.
In conclusion, we have presented here a new series of vi-
nyl ester proteasome inhibitors. Cyclization of the linear
prototype, achieved by insertion of an acidic residue into
the sequence, changes the activity profile. In the result-
ing cyclic derivatives, the conformational restriction per-
mits a better interaction with the b5 enzymatic subsite.
The inhibition of proteasome ChT-L activity was also
found to depend on the ring size. In some cases, head-
to-tail cyclization, led to cyclopeptides with a potency
in a nanomolar concentration.
With the aim of designing rigid molecules useful for
close structural studies, we have obtained new inhibitors
of the multicatalytic complex, selective for chymotryp-
sin-like activity and stable to enzymatic degradation,
able to permeate cell membranes. These vinyl ester
cyclopeptides represent an interesting springboard for
the future development of new rigid structures with a
better biological profile.
9. (a) Shiori, T.; Ninomiya, K.; Yamada, S. J. Am. Chem.
Soc. 1972, 94, 6203; (b) Brady, S. F.; Freidinger, R. M.;
Colton, C. D.; Homnick, C. F.; Whitter, W. L.; Curley, P.;
Nutt, R. F.; Veber, D. F. J. J. Org. Chem. 1987, 52, 764.
10. HPLC analysis was performed by a Beckman System
Gold with
a Hypersil BDS C18 column (5 lm;
4.6 · 250 mm). Analytical determination and capacity
factor (K0) of the vinyl ester cyclopeptides were deter-
mined using HPLC conditions in the above solvent system
(solvents A and B) programmed at flow rates of 1 mL/min
using the following linear gradients: (a) from 0% to 100%
B for 25 min and (b) from 30% to 90% B for 25 min. c[Phe-
Leu-Leu-Glu(Leu-VE)] (4). Purified yield 36%; purity
estimated by HPLC >98%; 1H NMR (CDCl3,
200 MHz): d (ppm) 1.01 (d, 6H), 1.09 (m, 12H), 1.31 (t,
3H, J = 7.2), 1.44 (m, 2H), 1.70–1.81 (m, 7H), 2.09 (m,
2H), 2.21 (d, 2H), 2.98 (m, 2H), 4.13 (q, 2H, J = 7.3), 4.27–
4.51 (m, 5H), 5.91 (d, 1H, J = 16.0), 6.98 (dd, 1H,
J = 16.1), 7.19–7.33 (m, 5H), 8.05 (br s, 5H). c[Phe-Val-
Ser-Asp]-Leu-VE (5). Purified yield 31%; purity estimated
Acknowledgments
Financial support of this work by University of Ferrara,
`
by the Ministero dell’Universita e della Ricerca Scientif-
ica e Tecnologica (MURST), the Associazione Italiana
per la Ricerca sul Cancro (AIRC), and the Istituto Supe-
`
riore di Sanita (progetto AIDS). English revision of the
text was carried out by Anna Forster.
1
by HPLC >98%; H NMR (CDCl3, 200 MHz): d (ppm)
0.99 (d, 6H), 1.13 (d, 6H), 1.29 (t, 3H, J = 7.3), 1.52 (m,
2H), 1.80 (m, 1H), 2.11 (s, 1H), 2.58–2.87 (m, 5H), 4.03
(m, 2H), 4.18 (q, 2H, J = 7.1), 4.32–4.60 (m, 5H), 5.93 (d,
1H, J = 16.2), 7.02 (dd, 1H, J = 16.1), 7.12–7.31 (m, 5H),
8.02 (br s, 5H).
References and notes
1. (a) Ciechanover, A. Cell 1994, 79, 13; (b) Coux, O.;
Tanaka, K.; Golberg, A. L. Annu. Rev. Biochem. 1996, 65,
801; (c) Hershko, A.; Ciechanover, A. Annu. Rev.
Biochem. 1998, 67, 425.
11. Gavioli, R.; Vertuani, S.; Masucci, M. G. Int. J. Cancer
2002, 101, 532.
12. Hendil, K. B.; Uerkvitz, W. J. Biochem. Biophys. Methods
1991, 22, 159.
13. Purification of the proteasomes and enzyme assays in vitro
and in live cells are described in ‘‘supporting information’’
of Ref. 5a.
2. (a) Coux, O.; Tanaka, K.; Golberg, A. L. Annu. Rev.
Biochem. 1996, 65, 801; (b) Hershko, A.; Ciechanover, A.
Annu. Rev. Biochem. 1998, 67, 425; (c) Orlowski, R. Z. Cell
Death Differ. 1999, 6, 303, 1695, 19; (d) Kisselev, A. F.;
Songyang, Z.; Goldberg, A. L. J. Biol. Chem. 2000, 275,
14831; (e) Myung, J.; Kim, K. B.; Crews, C. M. Med. Res.
Rev. 2001, 21, 245; (f) Boyo, M.; Wang, E. W. Curr. Top.
Microbiol. Immunol. 2002; (g) Adams, J.; Kauffman, M.
Cancer Invest. 2004, 22, 304.
3. (a) Lo¨we, J.; Stock, D.; Zwickl, P.; Baumeister, W.;
Huber, H. Science 1995, 268, 533; (b) Groll, M.; Ditzel, L.;
Lo¨we, J.; Stock, D.; Bochtler, M.; Bartunik, H. D.; Huber,
R. Nature 1997, 386, 463.
4. (a) Iqbal, M.; Chatterjee, S.; Kauer, J. C.; Das, M.;
Messina, P. A.; Freed, B.; Biazzo, W.; Siman, R. J. Med.
Chem 1995, 38, 2276; (b) Loidl, G.; Groll, M.; Musiol, H.-
J.; Huber, R.; Moroder, L. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 5418; (c) Kisselev, A. F.; Goldberg, A. L. Chem.
Biol. 2001, 8, 739; (d) Nazif, T.; Bogyo, M. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 2967; (e) Furet, P.; Imbach, P.;
Noorani, M.; Koeppler, J.; Lumen, K.; Lang, M.;
Guaniano, V.; Fuerst, P.; Roesel, J.; Zimmermann, J.;
Garcia-Echevevarria, C. J. Med. Chem. 2004, 47, 4810; (f)
14. The equilibrium structure of the molecule 4 was obtained
by molecular mechanics optimization (MMFF94 force
field: Halgren, T. A. The merck force field. J. Comp.
Chem. 1996, 17, 490–512, 520–552, 553–586, 587–615,
616–641). The molecule was docked to the crystal struc-
ture of the yeast 20S proteasome (Groll, M.; Koguchi, Y.;
Huber, R.; Kohno, J. J. Mol. Biol. 2001, 311, 543),
retrieved from the Protein Data Bank (PDB) archive
grated in the MOE system of programs (Chemical
Computing Group Inc., MOE 2006.08). Before the sim-
ulation, hydrogen atoms were added to the enzyme and
the energy of the structure was minimized using the
Amber99 molecular mechanics forcefield (Ponder, J. W.;
Case, D. A. Adv. Prot. Chem. 2003, 66, 27). During the
first step of the docking application, the ligand was treated
in a flexible manner by rotating routable bonds and a
number of the ligand’s configurations were generated and