M. C. Gurbhele-Tupkar et al. / Bioorg. Med. Chem. 16 (2008) 2579–2590
2589
7.51–7.45 (m, 4H), 7.40 (dd, J = 8.3, 2.2 Hz, 2H), 4.05
(quintet, J = 7.3 Hz, 4H), 3.20 (d, J = 21.8 Hz, 2H),
1.27 (t, J = 7.0 Hz, 6H); 13C NMR (CDCl3, 75 MHz) d
190.1, 136.7, 135.3, 133.8, 133.6 (d, J = 9 Hz), 130.8
(d, J = 6 Hz), 128.9, 127.6, 126.0, 62.4 (d, J = 6 Hz),
33.8 (d, J = 38 Hz), 16.5 (d, J = 5 Hz); Anal. calcd for
C18H21O4PS: C, 59.33; H, 5.81. Found C, 59.54; H, 5.76.
W.J.L. M.T.-G. was supported in part by a Student
Summer Research Award funded by the Biomedical Re-
search Initiative NIH/NIGMS R25 GM061347. L.P.
was supported by an undergraduate fellowship NIH/
NIGMS R25 GM061347. Y.S. was supported by an
undergraduate
GM008771.
fellowship
NIH/NIGMS
T34
5.3.4. Diethyl (4-acetylthiophenyl)methylphosphonate (9).
Sodium hydride (1.57 g of 60 wt%, 39.2 mmol) was
added to ethanol (240 mL) and the fizzing solution
was deoxygenated by bubbling Ar through it for
45 min. Diethyl (4-benzoylthiophenyl)methylphospho-
nate (4.19 g, 11.5 mmol) was then added. After 25 min
the reaction was quenched by the addition of acetic
anhydride (11.02 g, 108 mmol). No thiol groups were
detected by Ellman’s reagent. The solution was concen-
trated in vacuo and the slurry was partitioned between
300 mL CH2Cl2 and 150 mL satd aq sodium bicarbon-
ate. The aqueous layer was washed with 150 mL
CH2Cl2. The combined organics were dried (MgSO4),
filtered, and concentrated in vacuo. The crude material
was purified by flash chromatography (1:1 hexanes/ethyl
acetate to neat ethyl acetate) to provide 3.34 g of an oil,
References and notes
1. De Bernardez Clark, E. Curr. Opin. Biotechnol. 1998, 9,
157.
2. De Bernardez Clark, E. Curr. Opin. Biotechnol. 2001, 12,
202.
3. Lange, C.; Rudolph, R. Protein Folding Handbook 2005, 5,
1245.
4. Lilie, H.; Schwarz, E.; Rudolph, R. Curr. Opin. Biotech-
nol. 1998, 9, 497.
5. Rudolph, R.; Lilie, H. FASEB J. 1996, 10, 49.
6. Willis, M. S.; Hogan, J. K.; Prabhakar, P.; Liu, X.; Tsai,
K.; Wei, Y.; Fox, T. Protein Sci. 2005, 14, 1818.
7. Gough, J. D.; Lees, W. J. Bioorg. Med. Chem. Lett. 2005,
15, 777.
8. Orsini, G.; Goldberg, M. E. J. Biol. Chem. 1978, 253,
3453.
9. Expert-Bezancon, N.; Rabilloud, T.; Vuillard, L.; Gold-
berg, M. E. Biophys. Chem. 2003, 100, 469.
10. Dong, X.-Y.; Huang, Y.; Sun, Y. J. Biotechnol. 2004, 114,
135.
1
96% yield. H NMR (CDCl3, 300 MHz) d 7.36 (s, 4 H),
4.02 (quintet, J = 7.3 Hz, 4H), 3.17 (d, J = 21.8 Hz, 2H),
2.41 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H); 13C NMR (CDCl3,
75 MHz) d 193.9, 134.6, 133.4 (d, J = 9 Hz), 130.7 (d,
J = 6 Hz), 126.5, 62.3 (d, J = 7 Hz), 33.7 (d,
J = 38 Hz), 30.2, 16,4 (d, J = 5 Hz); Anal. calcd for
C13H19O4PS: C, 51.65; H, 6.33. Found C, 51.43; H, 6.29.
11. Maeda, Y.; Yamada, H.; Ueda, T.; Imoto, T. Protein Eng.
1996, 9, 461.
12. Rariy, R. V.; Klibanov, A. M. Proc. Natl. Acad. Sci. 1997,
94, 13520.
5.3.5. (4-Thiophenyl)methylphosphonic acid (2).55 A mix-
ture of diethyl (4-acetylthiophenyl)methylphosphonate
(3.12 g, 10.3 mmol) and concd HCl (500 mL) was heated
to reflux for 5 h. The oil bath was at 130 °C. The reaction
mixture was concentrated in vacuo to approximately
100 mL, warmed, filtered, and cooled to 0 °C. The
mixture was filtered, and the solid washed with water be-
fore being lyophilized to provide 1.75 g of product, 83%
13. Arakawa, T.; Tsumoto, K. Biochem. Biophys. Res. Com-
mun. 2003, 304, 148.
14. Reddy, K. R. C.; Lilie, H.; Rudolph, R.; Lange, C. Protein
Sci. 2005, 14, 929.
15. Maeda, Y.; Ueda, T.; Yamada, H.; Imoto, T. Protein Eng.
1994, 7, 1249.
16. Kersteen, E. A.; Raines, R. T. Antioxid. Redox Signal.
2003, 5, 413.
17. Woycechowsky, K. J.; Wittrup, K. D.; Raines, R. T.
Chem. Biol. 1999, 6, 871.
18. Woycechowsky, K. J.; Raines, R. T. Biochemistry 2003,
42, 5387.
19. Cabrele, C.; Fiori, S.; Pegoraro, S.; Moroder, L. Chem.
Biol. 2002, 9, 731.
20. Cabrele, C.; Cattani-Scholz, A.; Renner, C.; Behrendt, R.;
Oesterhelt, D.; Moroder, L. Eur. J. Org. Chem. 2002,
2144.
21. DeCollo, T. V.; Lees, W. J. J. Org. Chem. 2001, 66, 4244.
22. Gough, J. D.; Williams, R. H., Jr.; Donofrio, A. E.; Lees,
W. J. J. Am. Chem. Soc. 2002, 124, 3885.
23. Gough, J. D.; Gargano, J. M.; Donofrio, A. E.; Lees, W.
J. Biochemistry 2003, 42, 11787.
24. Gough, J. D.; Lees, W. J. J. Biotechnol. 2005, 115, 279.
25. Gough, J. D.; Barrett, E. J.; Silva, Y.; Lees, W. J.
J. Biotechnol. 2006, 125, 39.
1
yield. H NMR (CD3OD, 300 MHz) d 7.23–7.14 (m,
4 H), 3.04 (d, J = 21.6 Hz, 2H); 13C NMR (CD3OD,
75 MHz) d 131.7 (d, J = 6 Hz), 131.5, 131.1 (d,
J = 4 Hz), 130.2 (d, J = 3 Hz), 35.4 (d, J = 35 Hz); Anal.
calcd for C7H9O3PS: C, 41.18; H, 4.44. Found C, 41.10;
H, 4.36.
5.4. Determination of thiol pKa values56,57
The thiol pKa of the aromatic thiols was determined in
buffers with and without 0.5 M GdnHCl. The error is
0.1 U and comparison with literature values for some
of the compounds has been published previously.21
The addition of 0.5 M GdnHCl increased the value by
0.1 for the positively charged aromatic thiol and de-
creased the value by 0.1 for the negatively charged aro-
matic thiols, all within experimental error.
26. Yoshii, H.; Furuta, T.; Yonehara, T.; Ito, D.; Linko,
Y.-Y.; Linko, P. Biosci. Biotechnol. Biochem. 2000, 64,
1159.
27. De Bernardez Clark, E.; Hevehan, D.; Szela, S.; Maachu-
palli-Reddy, J. Biotechnol. Prog. 1998, 14, 47.
28. Ueda, T.; Nagata, M.; Imoto, T. J. Biochem. 2001, 130,
491.
Acknowledgments
29. Yasuda, M.; Murakami, Y.; Sowa, A.; Ogino, H.;
Ishikawa, H. Biotechnol. Prog. 1998, 14, 601.
This work was supported in part by the National Sci-
ence Foundation under Grant No. CHE-0342167 to