2544
M. Amere et al. / Tetrahedron Letters 49 (2008) 2541–2545
J. Am. Chem. Soc. 2007, 129, 498–499 and references cited therein; (i)
O
O
HO
A-15
A-15
Bartali, L.; Larini, P.; Guarna, A.; Occhiato, E. G. Synthesis 2007,
1733–1737; (j) Walz, I.; Bertogg, A.; Togni, A. Eur. J. Org. Chem.
2007, 2650–2658.
Me
Ph
O
O
Me
Ph
MeCN
toluene
Me
O
70 °C
1 h
rt, 2 h
92%
5. For selected references of Bro¨nsted acids used in Nazarov reactions,
see H3PO4/HCO2H: (a) Oda, M.; Yamazaki, T.; Kajioka, T.;
Miyatake, R.; Kuroda, S. Liebigs Ann. Rec. 1997, 2563–2566; (b)
Kraft, P.; Cadalbert, R. Synthesis 2002, 2243–2253; polyphosphoric
acid: (c) Minami, T.; Nakayama, M.; Fujimoto, K.; Matsuo, S. J.
Chem. Soc., Chem. Commun. 1992, 190–191; HClO4: (d) Chiu, P.; Li,
S. Org. Lett. 2004, 6, 613–616; HClO4/Ac2O: (e) Fernandez Mateos,
A.; Martin de la Nava, E. M.; Rubio Gonzalez, R. Tetrahedron 2001,
57, 1049–1057; (f) Fernandez Mateos, A.; Mateos Buron, L.; Martin
de la Nava, E. M.; Rubio Gonzalez, R. J. Org. Chem 2003, 68, 3585–
3592; HCl: (g) Casson, S.; Kocienski, P. J. Chem. Soc., Perkin Trans.
1 1994, 1187–1191; (h) Cheng, K. F.; Cheung, M.-K. J. Chem. Soc.,
Ph
HO(H2C)3
97%
15
10a
10b
Scheme 2. Nazarov cyclization catalyzed by resin supported sulfonic acid.
In summary, we have shown that TsOH (5%) in acetoni-
trile or under solvent-free conditions exhibits a high cata-
lytic performance for the Nazarov reaction of a-alkoxy
dienones and unpolarized substrates. In many cases, the
product obtained did not require any purification. This
metal-free simple methodology, in which a cheap solid
sulfonic acid was used, offers superior ecological viability
over the often practiced Nazarov reactions conducted
under drastic conditions and stoichiometric quantities of
Bro¨nsted acids. It should be compatible with the highly
functionalized molecules, and thus attractive for the syn-
thesis of complex natural products. The use of a poly-
mer-supported catalyst (Amberlyst-15) afforded, in a
preliminary experiment, either the Nazarov product or
the 2-hydroxy-cyclopentenone, depending on the reaction
conditions. Efforts to exploit this dual reactivity are
underway. We are also currently developing chiral sulfonic
acids for their application in enantioselective Nazarov
cyclization.
Perkin Trans.
1 1996, 1213–1218; H2SO4: (i) Clive, D. L. J.;
Sannigrahi, M.; Hisaindee, S. J. Org. Chem. 2001, 66, 954–961;
CF3CO2H: (j) Ishikura, M.; Imaizumi, K.; Katagiri, N. Heterocycles
2000, 53, 2201–2219; (k) Hiyama, T.; Shinoda, M.; Nozaki, H.
Tetrahedron Lett. 1978, 19, 771–774.
6. (a) Ogura, K.; Arai, T.; Kayano, A.; Akazome, M. Tetrahedron Lett.
1998, 39, 9051–9054; (b) Suzuki, T.; Ohwada, T.; Shudo, K. J. Am.
Chem. Soc. 1997, 119, 6774–6780; (c) Oda, M.; Kajioka, T.;
Haramoto, K.; Miyatake, R.; Kuroda, S. Synthesis 1999, 8, 1349–
1353; (d) Kajioka, T.; Oda, M.; Yamada, S.; Kawamori, Y.;
Miyatake, R.; Kuroda, S. Synthesis 1999, 1, 184–187; (e) Kerr, D.
J.; Metje, C.; Flynn, B. L. Chem. Commun. 2003, 1380–1381.
7. Ohloff, G.; Schulte-Elte, K. H.; Demole, E. D. Helv. Chim. Acta 1971,
54, 2913–2915.
8. Wada, E.; Fujiwara, I.; Kanemasa, S.; Tsuge, O. Bull Soc. Chim. Jpn
1987, 60, 325–334.
9. (a) Jacobson, R. M.; Lahm, G. P. J. Org. Chem. 1979, 44, 462–
464; (b) Jacobson, R. M.; Lahm, G. P.; Clader, J. W. J. Org. Chem.
1980, 45, 395–405.
Acknowledgments
10. Williams, D. R.; Robinson, L. A.; Nevill, C. R.; Reddy, J. P. Angew.
Chem., Int. Ed. 2007, 46, 915–918.
We gratefully acknowledge the CNRS (Centre National
de la Recherche Scientifique) for a fellowship to M.A.,
‘PunchOrga’ Network (Poˆle Universitaire Normand de
11. Shindo, M.; Yaji, K.; Kita, T.; Shishido, K. Synlett 2007, 1096–
1100.
12. Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J.
Angew. Chem., Int. Ed. 2007, 46, 2097–2100.
13. The phosphoric acid derivative was prepared from optically pure
BINOL. The Nazarov reaction was performed in refluxing aceto-
nitrile. However, beside degradation compounds, less than 10% yield
of 1b was obtained. Therefore, the enantiomeric excess was not
measured.
`
Chimie Organique), ‘Ministere de la Recherche et des
´
Nouvelles Technologies’, the ‘Region Basse Normandie’,
and the European Union (FEDER funding) for funding.
We are grateful to one referee for helpful comments.
14. General procedure for the Nazarov cyclization of 2-alkoxy-1,4-penta-
dien-3-ones 1a–11a. TsOH (10 mg, 0.05 mmol, 5 mol %) was added to
2-alkoxy-1,4-pentadien-3-one (1.0 mmol) either neat or in CH3CN
(1.0 mL). The reaction mixture was flushed with nitrogen and was
stirred at room temperature until the disappearance of
starting material (TLC monitoring). After completion, the crude
product was dissolved in diethyl ether (50 mL) and washed with
aqueous NaHCO3 (15 mL). After separation, the organic layer was
washed with brine (80 mL), dried over MgSO4, filtered and concen-
trated under vacuum. Most of the substrates gave clean reactions and
no purification was needed. When required, the purification was
carried out by flash column chromatography (8–10% of EtOAc in
cyclohexane).
References and notes
1. For a recent review, see: Gibson, S. E.; Lewis, S. E.; Mainolfi, N. J.
Organomet. Chem. 2004, 689, 3873–3890 and references cited therein.
2. For comprehensive reviews on Nazarov chemistry, see: (a) Habermas,
K. L.; Denmark, S. E.; Jones, T. K. Org. React. 1994, 45, 1–158; (b)
Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429–442; (c) Tius,
M. A. Eur. J. Org. Chem. 2005, 2193–2206; (d) Frontier, A. J.;
Collison, C. Tetrahedron 2005, 61, 7577–7606; (e) Pellissier, H.
Tetrahedron 2005, 61, 6479–6517.
3. Douelle, F.; Tal, L.; Greaney, M. F. Chem. Commun. 2005, 660–
662.
15. General procedure for the Nazarov cyclization of a,b-dialkyl-b0-aryl-
divinyl ketones 12a–14a (unpolarized substrates). TsOH (10 mg,
0.05 mmol, 5 mol %) was added to divinyl ketone 12a–14a (1.0 mmol)
in toluene (1.5 mL). The reaction mixture was flushed with nitrogen
and was heated at 100 °C until the disappearance of starting material
(TLC monitoring). After completion of the reaction, the crude
product was dissolved in EtOAc (50 mL) and washed with aqueous
NaHCO3 (15 mL). After separation, the organic layer was washed
with brine (80 mL), dried over MgSO4, filtered and concentrated
4. For selected catalytic reactions, see: (a) Giese, S.; West, F. G.
Tetrahedron 2000, 56, 10221–10228; (b) Bee, C.; Leclerc, E.; Tius, M.
A. Org. Lett. 2003, 5, 4927–4930; (c) Liang, G. X.; Gradl, S. N.;
Trauner, D. Org. Lett. 2003, 5, 4931–4934; (d) Aggarwal, V. K.;
Beffield, A. J. Org. Lett. 2003, 5, 5075–5078; (e) Liang, G. X.;
Trauner, D. J. Am. Chem. Soc. 2004, 126, 9544–9545; (f) West, F. G.;
Lin, G. Y.; Yang, C. Y.; Liu, R. S. J. Org. Chem. 2007, 72, 6753–6757;
(g) Nie, J.; Zhu, H. W.; Cui, H. F.; Hua, M. Q.; Ma, J. A. Org. Lett.
2007, 9, 3053–3056; (h) He, W.; Huang, J.; Sun, X. F.; Frontier, A. J.