Efficient Synthesis of Trifluoromethyl and
Related Trisubstituted Alkene Dipeptide Isosteres
by Palladium-Catalyzed Carbonylation of Amino
Acid Derived Allylic Carbonates
Eriko Inokuchi, Tetsuo Narumi, Ayumu Niida,
Kazuya Kobayashi, Kenji Tomita, Shinya Oishi,
Hiroaki Ohno, and Nobutaka Fujii*
FIGURE 1. Structures of native peptides and corresponding alkene-
type isosteres. Xaa, Yaa ) Amino acid side chains.
Graduate School of Pharmaceutical Sciences, Kyoto
UniVersity, Sakyo-ku, Kyoto 606-8501, Japan
electrostatic nature and the three-dimensional structure of
bioisosteres.3 However, our recent studies on stereoselective
synthesis and evaluation of functionalized (Z)-FADIs have
revealed that the (Z)-FADI of Phe-Gly showed lower binding
affinity for peptide transporter PEPT1 compared with the
corresponding EADI.4 Moreover, when compared to the parent
peptide, the EADI analogue of the GPR54 agonistic peptide
expressed similar agonist activity,5 whereas the (Z)-FADI
analogue showed significantly lower potency. These results
suggest that FADIs are not always effective as dipeptide
mimetics, even though some examples of bioactive compounds
containing FADIs have been reported.3b,c,6
ReceiVed October 26, 2007
We next turned our attention to trifluoromethylalkene dipep-
tide isosteres (CF3-ADIs, Figure 1) that possess a dipole moment
(2.3 D) closer to a native peptide bond (3.6 D) than do other
alkene-type isosteres (FADI, 1.4 D; EADI, 0.1 D).7 CF3-ADIs
could serve as more favorable dipeptide isosteres than FADIs
due to the presence of fluorine atoms on the sp3 carbon atoms.8
Although several asymmetric syntheses of CF3-ADIs have been
reported,7,9 stereoselective synthesis of optically pure Xaa-Gly
A novel stereoselective synthetic approach to (Z)-trifluo-
romethylalkene dipeptide isosteres (CF3-ADIs) is described.
Starting from readily available N-Boc-L-phenylalanine, Phe-
Gly type CF3-ADIs were obtained through palladium-
catalyzed carbonylation of allylic carbonates under CO.
While the reaction of N-Boc derivatives proceeds in excellent
yields but lower stereoselectivity (E:Z ) 62:38–43:57), the
reaction of the N,N-diBoc derivative exclusively affords the
desired (Z)-isomer in 61% yield. We also present a highly
stereoselective synthesis of several Phe-Gly type trisubsti-
tuted alkene dipeptide isosteres by palladium-catalyzed
carbonylation.
(2) (a) For EADIs and TADIs, see: Christos, T. E.; Arvanitis, A.; Cain, G. A.;
Johnson, A. L.; Pottorf, R. S.; Tam, S. W.; Schmidt, W. K. Bioorg. Med. Chem.
Lett. 1993, 3, 1035-1040. (b) Tamamura, H.; Hiramatsu, K.; Ueda, S.; Wang,
Z.; Kusano, S.; Terakubo, S.; Trent, J. O.; Peiper, S. C.; Yamamoto, N.;
Nakashima, H.; Otaka, A.; Fujii, N. J. Med. Chem. 2005, 48, 380–391. (c) Oishi,
S.; Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka,
A.; Kuroda, Y.; Asai, A.; Fujii, N. Tetrahedron 2006, 62, 1416–1424. (d) Xiao,
J.; Weisblum, B.; Wipf, P. Org. Lett. 2006, 8, 4731–4734.
(3) (a) Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.; Thomas, W. A.
Tetrahedron 1986, 42, 2101–2110. (b) Allmendinger, T.; Felder, E.; Hunger-
bühler, E. Tetrahedron Lett. 1990, 31, 7301–7304. (c) Lin, J.; Toscano, P. J.;
Welch, J. T. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 14020–14024. (d) Narumi,
T.; Niida, A.; Tomita, K.; Oishi, S.; Otaka, A.; Ohno, H.; Fujii, N. Chem.
Commun. 2006, 4720–4722.
Peptides constitute attractive and useful drug leads because
a large number of bioactive peptides have already been isolated
and identified. However, peptidase-mediated digestion of pep-
tides as well as lower membrane permeability of generally
hydrophilic peptides decrease their bioavailability in clinical use.
The backbone modification of amide bonds in bioactive peptides
is one of the most promising approaches to solving these
problems.1 Among the known isosteric units, (E)-alkene dipep-
tide isosteres (EADIs, Figure 1) have been studied extensively
because the (E)-carbon-carbon double bond closely resembles
the planar structure of the parent amide bond.2 Fluoroalkene
dipeptide isosteres (FADIs) can be considered as more ideal
surrogates than nonpolar EADIs due to the presence of a highly
electronegative fluorine substituent. This substituent mimics a
carbonyl oxygen atom and might contribute to both the
(4) Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi,
S.; Otaka, A.; Inui, K.; Fujii, N. Org. Lett. 2006, 8, 613–616.
(5) (a) Tomita, K.; Niida, A.; Oishi, S.; Ohno, H.; Cluzeau, J.; Navenot, J.;
Wang, Z.; Peiper, S. C.; Fujii, N. Bioorg. Med. Chem. 2006, 14, 7595–7603. (b)
Tomita, K.; Narumi, T.; Niida, A.; Oishi, S.; Ohno, H.; Fujii, N. Biopolymers
2007, 88, 272–278.
(6) Bartlett, P. A.; Otake, A. J. Org. Chem. 1995, 60, 3107–3111.
(7) Wipf, P.; Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088–
6089.
(8) Howard, J. A. K.; Hoy, V. J.; O’Hagan, D.; Smith, G. T. Tetrahedron
1996, 52, 12613–12622.
(9) (a) Xiao, J.; Weisblum, B.; Wipf, P. J. Am. Chem. Soc. 2005, 127, 5742–
5743. (b) Wipf, P.; Xiao, J.; Geib, S. J. AdV. Synth. Catal. 2005, 347, 1605–
1613.
(10) (a) For further discussion of palladium-catalyzed carbonylation of allylic
carbonates, see: Tsuji, J.; Sato, K.; Okumoto, H. Tetrahedron Lett. 1982, 23,
5189-5190. (b) Tsuji, J.; Sato, K.; Okumoto, H. J. Org. Chem. 1984, 49, 1341–
1344. (c) Ozawa, F.; Son, T.; Ebina, S.; Osakada, K.; Yamamoto, A.
Organometallics 1992, 11, 171–176. (d) Narumi, T.; Fujii, M.; Adachi, T.;
Shimizu, I. Pept. Sci. 2003, 417–420.
(1) (a) Burgess, K. Acc. Chem. Res. 2001, 34, 826–835. (b) Bursavich, M. G.;
Rich, D. H. J. Med. Chem. 2002, 45, 541–558. (c) Hruby, V. J. J. Med. Chem.
2003, 46, 4215–4231.
3942 J. Org. Chem. 2008, 73, 3942–3945
10.1021/jo702318d CCC: $40.75 2008 American Chemical Society
Published on Web 04/16/2008