C O M M U N I C A T I O N S
Table 2. Pd(II)-Catalyzed Enantioselective Conia-ene Reactiona
Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont,
GlaxoSmithKline, and Eli Lilly & Co. for financial support. We
thank Takasago for their generous donation of the SEGPHOS
ligands.
Supporting Information Available: Experimental procedures,
compound characterization data; X-ray structure data in CIF format.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Overman, L. E.; Douglas, C. J. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5363. (b) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105.
(c) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001. 40, 4591. (d)
Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
(e) Fuji, K. Chem. ReV. 1993, 93, 2037.
(2) For recent examples of enantioselective intermolecular Michael of prochiral
pronucleophiles, see: (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am.
Chem. Soc. 2002, 124, 11240. (b) Harada, S.; Kumagai, N.; Kinoshita,
T.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2582. (c)
Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688. (d) Chen,
Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem. 2003,
68, 871. (e) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125,
11204. (f) Li, H.; Song, J.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2005,
127, 8948.
(3) (a) Hirai, Y.; Terada, T.; Yamazaki, T. J. Am. Chem. Soc. 1988, 110,
958. (b) Foncesca, M. T. H.; List, B. Angew. Chem., Int. Ed. 2004, 43,
3958. For auxiliary-controlled asymmetric intramolecular Michael, see:
(c) Evans, D. A.; Bilodeau, M. T.; Somers, J.; Clardy, D.; Kato, Y. J.
Org. Chem. 1991, 56, 5750. (d) Stork, G.; Saccomano, N. A. NouV. J.
Chim. 1986, 28, 677. For a review of the intramolecular Michael addition,
see: (e) Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin,
J. I. Org. React. 1995, 47, 315.
(4) Enantioselective R-vinylaton of ketones with vinyl halides, see: Chieffi,
A.; Kamikawa, K.: Åhman, J.; Fox, J. M.; Buchwald, S. L. Org. Lett.
2001, 3, 1897. For Pd-catalyzed R-allylation of ketoesters using alkynes,
see: (b) Yamamoto, Y.; Patil, N. T. J. Org. Chem. 2004, 69, 6478.
(5) Enantioselective addition to alkynones: (a) Bella. M. Jørgensen, K. A. J.
Am. Chem. Soc. 2004, 126, 5672. (b) Papillon, J. P. N.; Taylor, R. J. K.
Org. Lett. 2002, 4, 119. For an enantioselective cycloaddition of an alkyne
see: (c) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10788.
(6) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Staben, S. T.; Kennedy-Smith J. J.; Toste, F. D.
Angew. Chem., Int. Ed. 2004, 43, 5350.
(7) (PyBOX)Copper(II) triflate failed to catalyze the reaction even in the
presence of a cationic gold(I) cocatalyst.8 Both cationic BINAP-nickel-
(II)8 (<5% ee) and BINAP-platinum(II) (18% ee) complexes promoted
the reaction; however, the enantioselectivity was poor.
(8) Cu-catalyzed Conia-ene reaction: Bouyssi, D.; Monteiro, N.; Balme, G.
Tetrahedron Lett. 1999, 40, 1297-1300.
(9) Ni-catalyzed Conia-ene reaction: Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang.
D. Org. Lett. 2005, 7, 2185.
a Reaction conditions: 10 mol % 5, 20% Yb(OTf)3, 10 equiv of AcOH,
0.02 M in diethyl ether, rt. b Run in 0.5 M CH2Cl2
The reaction also proceeds well with cyclic ketones allowing
for the enantioselective synthesis of polycycles through a kinetic
resolution. For example, ketone 32 underwent palladium-catalyzed
cyclization to afford 33 in 82% ee at 41% conversion (s ) 18) (eq
1). Notably, in this case the reaction proceeded well in the absence
(10) For enantioselective reactions catalyzed by [(DTBM-SEGPHOS) Pd(II)-
(H2O)2](OTf)2, see: (a) Hamashima, Y.; Yagi, K.; Takano, H.; Tama´s.;
Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. (b) Hamashima, Y.;
Suzuki, T.; Shimura, T.; Umebayashi, N.; Tamura, T.; Sasamoto, N.;
Sodeoka, M. Tetrahedron: Asymmetry 2005, 46, 1447.
(11) The low yield is a result of competitive alkyne dimerization, which is
presumably suppressed by the acid. Trost, B. M.; Sorum, M. T.; Chan,
C.; Harms, A. E.; Ru¨hter, G. J. Am. Chem. Soc. 1997, 119, 698.
(12) (a) Moneitro, N.; Balme, G.; Gore, J. Tetrahedron 1992, 48, 10103. (b)
Balme, G.; Bouyssi, D.; Faure, R.; Gore, J.; Van Hemelryck, B.
Tetrahedron 1992, 48, 3891.
of Yb(OTf)3. A mechanistic hypothesis involving generation of a
palladium enolate2a of the â-dicarbonyl nucleophile that undergoes
Lewis acid (or Brønsted acid in the case of eq 1)-promoted addition
to the alkyne is envisioned.15,16
In conclusion, we have developed the first enantioselective
intramolecular Conia-ene reaction of â-dicarbonyl compounds and
alkynes. The Pd(II)/Yb(III) dual catalyst system allows for the
asymmetric synthesis of all-carbon quaternary centers and generates
a product containing an alkene that can be further manipulated.
For example, Conia-ene adduct 15 was employed in an intramo-
lecular reductive-Heck cyclization to produce tricyclic ketone 3417
(eq 2). Further applications of this Pd(II)/Yb(III) dual catalyst
system for enantioselective synthesis will be reported in due course.
(13) Addition of â-dicarbonyl compounds to olefins catalyzed by Pt(II), Eu-
(III) and stoichiometric HCl, see: Liu, C.; Widenhoefer, R. A. Tetrahedron
Lett. 2005, 46, 285.
(14) The corresponding 5-endo-dig carbocyclization6b required prolonged
reaction times (7 days) and gave racemic products.
(15) In accord with a mechanism involving trans addition to the alkyne,
cyclization of a deutero-acetylene resulted in isolation of the adduct in
which deuterium was only incorporated cis to the ketoester; however, this
experiment was complicated by deuterium exchange of acetylenic proton.
(16) A mechanism involving alkyne activation by Pd(II) was excluded in
isomerization of 1,6-enynes catalyzed by related cationic bis(phosphine)-
palladium(II) complexes: Mikami, K.; Hatano, M. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5767.
(17) The absolute stereochemistry of 34 was assigned using the mandelate
method on alcohol 35 (see Supporting Information). The stereochemistry
of remaining ketoesters was assigned by analogy and is consistent with
the stereochemistry predicted by the Sodeoka model.2a
Acknowledgment. We gratefully acknowledge the University
of California, Berkeley, NIHGMS (R01 GM073932-01) Merck
JA055059Q
9
J. AM. CHEM. SOC. VOL. 127, NO. 49, 2005 17169