precursor 8c and Dr Christopher McKay for his advice concerning
the preparation of this paper. ZM also thanks the Ministe`re de
l’Enseignement Supe´rieur et de la Recherche for a PhD fellowship.
Compounds, ed. Z. Rappaport and I. Marek, Wiley, Chichester, 2004,
495; (d) G. W. Gribble, in Science of Synthesis, vol. 8a, ed. M. Majewski
and V. Snieckus, Thieme, Stuttgart, 2006, 357.
13 For a precedent on the ortho-directing properties of the MOM ether
group during the metalation of a pyridine ring, see: (a) R. C. Ronald
and M. R. Winkle, Tetrahedron, 1983, 39, 2031; (b) See ref. 9; (c) M.
Schlosser, in Organometallics in Synthesis, 2nd edn, ed. M. Schlosser,
Wiley, Chichester, 2002, pp. 1–352.
References and notes
1 (a) G. W. Gribble, J. Chem. Soc., Perkin Trans. 1, 2000, 1045; (b) G. R.
Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106, 2875.
14 The ratio of 4-formyl/3-formyl pyridine derivatives was determined by
2 For exhaustive reviews on the preparation and reactivity of azaindoles,
see: (a) F. Popowycz, S. Routier, B. Joseph and J.-Y. Me´rour, Tetrahe-
dron, 2007, 63, 1031 (7-azaindoles); (b) F. Popowycz, J.-Y. Me´rour and
B. Joseph, Tetrahedron, 2007, 63, 8689 (4-, 5- and 6-azaindoles). For
a review article dealing with organometallic-mediated approaches, see:
(c) J. J. Song, J. T. Reeves, F. Gallou, Z. Tan, N. K. Yee and C. H.
Senanayake, Chem. Soc. Rev., 2007, 36, 1120. For recent approaches,
see: (d) Y.-Q. Fang, J. Yuen and M. Lautens, J. Org. Chem., 2007, 72,
5152; (e) H. Schirok, S. Figueroa-Pe´rez, M. Thutewohl, H. Paulsen,
W. Kroh and D. Klewer, Synthesis, 2007, 251; (f) M. McLaughlin, M.
Palucki and I. W. Davies, Org. Lett., 2006, 8, 3307; (g) X. Zheng and
M. A. Kerr, Org. Lett., 2006, 8, 3777; (h) S. Cacchi, G. Fabrizi and
L. M. Parisi, J. Comb. Chem., 2005, 7, 510.
3 For a review on purine-based compounds, see: M. Legraverend and
D. S. Grierson, Bioorg. Med. Chem., 2006, 14, 3987.
4 (a) Y. A. Jackson, A. D. Billimoria, E. V. Sadanandan and M. P. Cava,
J. Org. Chem., 1995, 60, 3543; (b) K. M. Aubart and C. H. Heathcock,
J. Org. Chem., 1999, 64, 16; (c) M. legentil, J. Bastide and E. Delfourne,
Tetrahedron Lett., 2003, 44, 2473; (d) C. Marminon, J. Gentili, R. Barret
and P. Nebois, Tetrahedron, 2007, 63, 735.
5 Although few reports on azaquinone syntheses occur in the literature,
some examples deal with quinone monoimides: (a) M. Largeron,
A. Neudorffer and M.-B. Fleury, Angew. Chem., Int. Ed., 2003, 42,
1026; (b) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran and K. Sugita,
Angew. Chem., Int. Ed., 2001, 40, 2145. The term “azaquinone” should
designate compounds in which the nitrogen heteroatom is a member of
the quinoid ring, as mentioned by Boyer and Kruger: (c) J. H. Boyer
and S. Kruger, J. Am. Chem. Soc., 1957, 79, 3552. For other examples
of azaquinone syntheses, see: (d) H. Poschenrieder, H.-D. Stachel, B.
Wiesend and K. Polborn, J. Heterocyclic Chem., 2003, 40, 61; (e) D. S.
Pearce, M. J. Locke and H. W. Moore, J. Am. Chem. Soc., 1975, 97,
6181; (f) J. A. Moore and F. J. Marascia, J. Am. Chem. Soc., 1959, 81,
6049.
6 T. Lomberget, S. Radix and R. Barret, Synlett, 2005, 2080.
7 (a) H. Hemetsberger, D. Knittel and H. Weidmann, Monatsh. Chem.,
1969, 100, 1599; (b) For a review, see: C. J. Moody, in Comprehensive
Organic Synthesis, Vol. 7, Eds. B. M. Trost, I. Fleming and S. Ley,
Pergamon Press, Oxford, 1991, pp. 21–38. For a recent application
of the Hemetsberger reaction directed towards the total synthesis of
variolin B, see: (c) P. Molina, P. M. Fresneda and S. Delgado, J. Org.
Chem., 2003, 68, 489. For another approach to 5-, 6- and 7-azaindoles
using the Hetmetsberger reaction, see: (d) P. J. Roy, C. Dufresne, N.
Lachance, J.-P. Leclerc, M. Boisvert, Z. Wang and Y. Leblanc, Synthesis,
2005, 2751.
1H NMR of the crude product and estimated to be 95:5.
15 For a study on the ortho-directing properties of tetrahydropyranyl
ethers of 3- and 4-hydroxypyridines during metalation reactions, see:
R. Azzouz, L. Bischoff, C. Fruit and F. Marsais, Synlett, 2006, 1908.
16 No trace of the 4-formyl pyridine derivative was detected by 1H NMR
of the crude product.
17 Determined by 1H NMR of the crude product.
18 The 11a/4a ratio was determined by 1H NMR of the white solid which
was obtained after quenching the reaction at −20 ◦C with ice, warming
up to 4 ◦C over 1 h (in a refrigerator) and filtration of the resulting
precipitate on a 0.45 lm glass fiber membrane.
19 For leading references on hypervalent iodine(III) reagents, see: (a) A.
Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press,
London, 1997; (b) Hypervalent Iodine Chemistry, ed. T. Wirth, Topics
in Current Chemistry, vol. 224, Springer-Verlag, Berlin, Heidelberg,
2003. For a review on hypervalent iodine(V) reagents, see: (c) U.
Ladziata and V. Zhdankin, ARKIVOC, 2006, (ix), 26.
20 H. Tohma, H. Morioka, Y. Harayama, M. Hashizume and Y. Kita,
Tetrahedron Lett., 2001, 42, 6899.
21 It should be noted that a low yield (19%) of compound 12a was
obtained using 3 equivalents of cerium ammonium nitrate (CAN) in
an acetonitrile–water medium.
˚
˚
22 Atom distances: C(6)–O(2): 1.210(3) A; C(8)–O(4): 1.213(3) A; C(10)–
˚
˚
O(1): 1.203(4) A; N(3)–H(2): 0.88 A.
23 There are examples in the literature of similar trioxo structures (only
known in 6-azaindole or 6-aza-b-carboline series); for two of them, see:
(a) D. J. Collins, D. P. J. Pearson, C. V. Coles, G. Mitchell, S. M. Ridley,
E. D. Clarke, K. J. Gillen, and S. Tiffin, PCT Int. Appl. WO 94/27969,
1994; (b) H. Suzuki, K. Shinpo, T. Yamazaki, S. Niwa, Y. Yokoyama
and Y. Murakami, Heterocycles, 1996, 42, 83.
24 For recent examples of oxidations of para-hydroxymethoxy aromatic
ring into para-quinone (with eitherPIFA or CAN), see: (a) M. Rawat,
V. Prutyanov and W. D. Wulff, J. Am. Chem. Soc., 2006, 128, 11044;
(b) Y. Chen and M. G. Steinmetz, J. Org. Chem., 2006, 71, 6053;
(c) G. Vincent and R. M. Williams, Angew. Chem., Int. Ed., 2007,
46, 1517; (d) X. Chen and J. Zhu, Angew. Chem., Int. Ed., 2007, 46,
3962.
25 During our investigations on the demethylation of dimethoxy 5-
and 6-azaindoles, another research group has described selective
monodemethylations of dimethoxy-6-azaindoles: K. Gesenberg, P. P.
Deshpande, A. Pullockaran, F. Xu, D. Wu, Q. Gao, C. Pathirana, J.
Castoro, N. Soundararajan and A. Staab, Tetrahedron Lett., 2007, 48,
2675.
26 When the condensation reaction between 5c and methyl azidoacetate
was carried out at 30 ◦C, an intense degradation of the reaction mixture
was observed and no trace of the desired acrylate 13 was isolated.
27 K. Kondo, S. Morohoshi, M. Mitsuhashi and Y. Murakami, Chem.
Pharm. Bull., 1999, 47, 1227.
8 V. Can˜ibano, J. F. Rodr´ıguez, M. Santos, M. A. Sanz-Tejedor and M. C.
Carren˜o, Synthesis, 2001, 2175.
9 H. Van de Poe¨l, G. Guillaumet and M.-C. Viaud-Massuard, Heterocy-
cles, 2002, 57, 55.
10 For a review on lithiating agents for pyridine derivatives, see: P. Gros
and Y. Fort, Eur. J. Org. Chem., 2002, 3375.
11 (a) D. L. Comins and D. H. LaMunyon, Tetrahedron Lett., 1988, 29,
773; (b) F. Tre´court, M. Mallet, F. Marsais and G. Que´guiner, J. Org.
Chem., 1988, 53, 1367; (c) M. Mallet, J. Organomet. Chem., 1991, 406,
49.
12 For reviews on directed ortho-metalation (DoM) reactions, see: (a) V.
Snieckus, Chem. Rev., 1990, 90, 879; (b) C. G. Hartung and V.
Snieckus, in Modern Arene Chemistry, ed. D. Astruc, Wiley-VCH,
Weinheim, 2002, 330; (c) J. Clayden, in The Chemistry of Organolithium
28 Oxidation reactions with PIFA were carried out in open vessels, using
non-degassed solvents.
29 It is noteworthy that the PIFA-mediated (4 equiv) oxidation reaction
of dimethoxyazaindoles 2 in methanol–acetonitrile did not lead to the
formation of functionalised azaindoles 17.
30 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62,
7512.
31 A. F. Burchat, J. M. Chong and N. Nielsen, J. Organomet. Chem., 1997,
542, 281.
32 A. T. Moore and H. N. Rydon, Org. Synth., 1965, 45, 47.
1376 | Org. Biomol. Chem., 2008, 6, 1364–1376
This journal is
The Royal Society of Chemistry 2008
©