wondered whether the high catalytic efficacy of (HA)SPO
preligands originated from an assisted intramolecular proton
abstraction mechanism,11 illustrated as transition-state model
3 in Scheme 1. By analogy, a concerted cyclometalation-
All ruthenium-catalyzed direct arylations with organic
electrophiles were limited to the use of the highly polar
solvent N-methylpyrrolidinone (NMP).1a Consequently, we
focused on the use of significantly less polar toluene as
solvent (Table 1). As expected, no reaction occurred in
Scheme 1. Cooperative Metalation-Deprotonation
Table 1. Ruthenium-Catalyzed Direct Arylation of Triazole 5a
in PhMea
entry
cocatalyst
HIPrClb
isolated yield (%)
deprotonation process should be also accessible through the
use of substoichiometric amounts of carboxylates12 via
transition state 4. Consequently, we probed the use of acids
as cocatalysts in ruthenium-catalyzed direct arylations with
aryl (pseudo)halides13 as electrophiles.
1
2
3
4
5
6
7
8
9
9
20
85
85
66
69
50
93
89
b
PPh3
(1-Ad)2P(O)Hb
(1-Ad)CO2Hc
t-BuCO2Hc
Methodologies for copper-catalyzed regioselective syn-
theses of 1,2,3-triazoles 514 recently enabled their widespread
applications in various research areas, ranging from bioor-
ganic chemistry to material sciences.15 Therefore, we set out
to probe this valuable heterocyclic scaffold in novel ruthenium-
catalyzed direct arylations.
i-PrCO2Hc
(PhO)2P(O)OHc
MesCO2Hc
10
MesCO2Hb
a Reaction conditions: [RuCl2(p-cymene)]2 (2.5 mol %), cocatalyst
(10.0-30.0 mol %), K2CO3 (1.0 mmol), 5a (0.50 mmol), 6a (0.75 mmol),
PhMe (2 mL), 120 °C, 22 h. b 10.0 mol %. c 30 mol %. HIPrCl ) N,N′-
bis-(2,6-diisopropyl phenyl)imidazolium chloride.
(9) For the use of PPh3 as ligand in ruthenium-catalyzed direct arylations
with aryl bromides in NMP, see: (a) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue,
Y. J. Org. Chem. 2005, 70, 3113–3119. (b) Oi, S; Sakai, K.; Inoue, Y.
Org. Lett. 2005, 7, 4009–4011, and references cited therein. See also: (c)
Ackermann, L.; Althammer, A.; Born, R. Synlett 2007, 2833–2836.
(10) (a) Davies, D. L.; Al-Duaij, O.; Fawcett, J.; Giardiello, M.; Hilton,
S. T.; Russell, R. D. Dalton Trans. 2003, 4132–4138. (b) For previous work
on ortho-metalations of functionalized arenes, see: Fernandez, S.; Pfeffer,
M.; Ritleng, V.; Sirlin, C. Organometallics 1999, 18, 2390–2394, and
references cited therein.
toluene16 in the absence of an additive (entry 1). Various
N-heterocyclic carbene precursors4,8 or phosphines9 failed
to provide satisfactory results as well (entries 2, and 3).
On the contrary, an efficient ruthenium-catalyzed direct
arylation of triazole 5a was achieved with air-stable SPO
(1-Ad)2P(O)H6 as preligand (entry 4). Thus, triazole 7a was
exclusively formed with a regioselectivity that is comple-
mentary to the one observed in palladium-catalyzed17 direct
arylations of the heterocyclic moiety in 1,2,3-triazoles.
Remarkably, carboxylic (entries 5-7) or phosphoric acids
(entry 8) enabled efficient C-H bond functionalizations of
triazole 5a in toluene as well. Among a variety of cocatalysts,
aromatic sterically hindered carboxylic acid MesCO2H
proved superior (entry 9), thus allowing for a reduction of
cocatalyst loading (entry 10).
With a highly active catalytic system in hand, we probed
its scope in direct arylations of 1,2,3-triazoles 5 employing
apolar toluene as solvent (Table 2).18 A variety of function-
alized electron-poor (entries 1-5) as well as electron-rich
(entries 6, and 7) aryl bromides was converted with high
efficacy. Additionally, a heteroaryl bromide enabled the
chemo- and regioselective preparation of triazole 7i with
excellent isolated yield (entry 8).
(11) Cooperative mechanisms were previously proposed for transition
metal-catalyzed C-H bond functionalizations: (a) Ryabov, A. D Chem.
ReV. 1990, 90, 403–424. (b) Davies, D. L.; Donald, S. M. A. Macgregor,
S. A. J. Am. Chem. Soc. 2005, 127, 13754–13755. (c) Tenn, W. J., III;
Young, K. J. H.; Bhalla, G.; Oxgaard, J.; Goddard, W. A., III; Periana, R.
A J. Am. Chem. Soc. 2005, 127, 14172–14173. (d) Feng, Y.; Lail, M.;
Barakat, K. A.; Cundari, T. R.; Gunnoe, T. B.; Petersen, J. L. J. Am. Chem.
Soc. 2005, 127, 14174–14175. (e) Garcia-Cuadrado, D.; Braga, A. A. C.;
Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066–1067.
(f) Feng, Y.; Lail, M.; Foley, N. A.; Gunnoe, T. B.; Barakat, K. A.; Cundari,
T. R.; Petersen, J. L. J. Am. Chem. Soc. 2006, 128, 7982–7994. (g) Tenn,
W. J., III; Young, K. J. H.; Oxgaard, J.; Nielsen, R. J.; Goddard, W. A.,
III; Periana, R. A. Organometallics 2006, 25, 5173–5175. (h) Oxgaard, J.;
Tenn, W. J., III; Nielsen, R. J.; Periana, R. A.; Goddard, W. A., III
Organometallics 2007, 26, 1565–1567. (i) Garcia-Cuadrado, D.; de Men-
doza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem.
Soc. 2007, 129, 6880–6886. (j) Pascual, S.; de Mendoza, P.; Echavarren,
A. M. Org. Biomol. Chem. 2007, 2727–2734.
(12) Pivalic acid was used in highly efficient palladium-catalyzed direct
arylations: (a) Lafrance, M.; Fagnou, K J. Am. Chem. Soc. 2006, 128,
16496–16497. (b) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem.
Soc. 2007, 129, 14570–14571.
(13) For ruthenium-catalyzed direct arylations and alkenylations with
organometallic reagents, see: Ueno, S.; Chatani, N.; Kakiuchi, F. J. Org.
Chem. 2007, 72, 3600–3602, and references cited therein.
(14) (a) Huisgen, R. Angew. Chem. 1963, 75, 604–637. (b) Rostovtsev,
V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596–2599. (c) Tornoe, C. W.; Christensen, C.; Meldal, M. J.
Org. Chem. 2002, 67, 3057–3064.
(16) Under otherwise identical reaction conditions, triazole 7a was only
isolated in 22% yield when NMP was used as solvent.
(15) Selected recent reviews (a) Nandivada, H.; Jiang, X.; Lahann, J.
AdV. Mater. 2007, 19, 2197–2208. (b) Angell, Y. L.; Burgess, K. Chem.
Soc. ReV. 2007, 36, 1674–1689. (c) Lutz, J.-F. Angew. Chem., Int. Ed. 2007,
46, 1018–1025.
(17) (a) Ackermann, L.; Vicente, R.; Born, R. AdV. Synth. Catal. 2008,
350, 741–748. (b) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan,
V. Org. Lett. 2007, 9, 2333–2336. (c) Iwasaki, M.; Yorimitsu, H.; Oshima,
K. Chem. Asian J. 2007, 2, 1430–1435.
2300
Org. Lett., Vol. 10, No. 11, 2008