only accessible via internal redox reactions employing
R-functionalized aldehyde precursors (Scheme 1, path B)11
but can, in principle, also be obtained from unfunctionalized
aldehydes upon carbene attack via external oxidation (Scheme
1, path C)12,13 of the corresponding initial intermediate.
Scheme 1. Overview of Stoichiometric and (NHC) Catalytic
Lactonization Approaches via Activated Acyl Species
Recently, we reported on the NHC-mediated synthesis of
3,4-dihydrocoumarins following the intramolecular redox
strategy starting from o-hydroxycinnamaldehydes.14
The obvious benefits of a related oxidation/esterification
sequence using heterazolium-derived carbenes as catalytic
acyl transfer agents for the synthesis of lactones and the
significant potential of merging this approach with an
operationally trivial recycling method for the oxidant prompted
us to evaluate the feasibility of this concept (Scheme 2).
lactonization reactions7 have recently attracted a revived
interest.8
Scheme 2. Catalytic Oxidative Lactonization Using NHCs
Apart from the versatile chemistry of N-heterocyclic
carbene (NHC)-catalyzed C-C bond formations,9 NHCs also
allow for the catalytic generation of activated acyl azolium
species which can undergo subsequent C-O or C-N bond
formation.10 In general, these activated carboxylates are not
(4) For selected examples, see, for aldehyde C-H activation with Rh
catalysts: (a) Phan, D. H. T.; Kim, B.; Dong, V. M. J. Am. Chem. Soc.
2009, 131, 15608. (b) Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem.
Soc. 2008, 130, 2916. (c) Shen, Z.; Dornan, P. K.; Khan, H. A.; Woo, T. K.;
Dong, V M. J. Am. Chem. Soc. 2009, 131, 1077. Rh-catalyzed oxidative
process: (d) Ye, Z.; Lv, G.; Wang, W.; Zhang, M.; Cheng, J. Angew. Chem.,
Int. Ed. 2010, 49, 3671. Pd catalysts: (e) Ye, Z.; Qian, P.; Lv, G.; Luo, F.;
Cheng, J. J. Org. Chem. 2010, 75, 6043. (f) Li, Y.; Jardine, K. J.; Tan
R.; Song, D.; Dong, V. M. Angew. Chem., Int. Ed. 2009, 48, 9690.
(g) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 9032. Ru catalysts: (h) Omura, S.; Fukuyama, T.;
Murakami, Y.; Okamoto, H.; Ryu, I. Chem. Commun. 2009, 6741, and
references cited therein.
Herein, we disclose the successful development of a simple
carbene-catalyzed oxidative lactonization protocol for the
efficient synthesis of benzodioxepinone derivatives.
Macrocyclic benzolactones such as the marine salicyli-
halamides and structurally related salicylic acid lactones
exhibit attractive biological properties;15 also, the lichen and
endophytic fungi-derived class of depsidones with their
characteristic seven-membered benzo[e]1,4-dioxepan-5-one
(5) For an NHC-catalyzed intramolecular hydroacylation yielding a
phthalide scaffold, see: Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2006,
128, 4558.
(6) For selected recent examples, see: (a) Whitehead, D. C.; Yousefi,
R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298.
(b) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W.
J. Am. Chem. Soc. 2010, 132, 3664. (c) Zhang, H.; Zhang, S.; Liu, L.; Luo,
G.; Duan, W.; Wang, W. J. Org. Chem. 2010, 75, 368.
(7) Potential complications arise from overoxidation, especially in the
case of electron-rich substrates and as well from missing selectivity if non-
meso-diols are used. For a general review on oxidative esterifications, see:
Ekoue-Kove, K.; Wolf, C. Chem.sEur. J. 2008, 14, 6302.
(11) Representative recent examples: (a) Reynolds, N. T.; de Alaniz,
J. R.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518. (b) Chow, K. Y.-K.;
Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. (c) Chan, A.; Scheidt,
K. A. Org. Lett. 2005, 7, 905. (d) Sohn, S. S.; Bode, J. W. Angew. Chem.,
Int. Ed. 2006, 45, 6021. (e) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2010,
132, 2860. (f) Zeitler, K. Org. Lett. 2006, 8, 637.
(8) Representative recent examples: (a) Ebine, M.; Suga, Y.; Fuwa, H.;
Sasaki, M. Org. Biomol. Chem. 2010, 8, 39. (b) Ito, M.; Osaku, A.; Shiibashi,
A.; Ikariya, T. Org. Lett. 2007, 9, 1821. (c) Hansen, T. M.; Florence, G. J.;
Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. Tetrahedron Lett.
2003, 44, 57. (d) Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. Org. Lett.
2002, 4, 2361.
(12) Representative recent examples using MnO2: (a) Maki, B. E.; Chan,
A.; Phillips, E. M.; Scheidt, K. A. Tetrahedron 2009, 65, 3102. (b) Maki,
B. E.; Scheidt, K. A. Org. Lett. 2008, 10, 4331. (c) Maki, B. E.; Chan, A.;
Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371.
(9) For recent reviews, see: (a) Phillips, E. M.; Chan, A.; Scheidt, K. A.
Aldrichimica Acta 2010, 42, 55. (b) Moore, J. L.; Rovis, T. Top. Curr.
Chem. 2010, 291, 77. (c) Zeitler, K. E. Schering Found. Symp. Proc. 2007,
2, 183. (d) Enders, D.; Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107,
5606. (e) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506.
(13) Representative examples using organic oxidants: (a) De Sarkar, S.;
Studer, A. Org. Lett. 2010, 12, 1992. (b) De Sarkar, S.; Grimme, S.; Studer,
A. J. Am. Chem. Soc. 2010, 132, 1190. (c) Noonan, C.; Baragwanath, L.;
Connon, S. J. Tetrahedron Lett. 2008, 49, 4003. (d) Guin, J.; De Sarkar,
S.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 8727.
(e) Miyashita, A.; Suzuki, Y.; Nagasaki, I.; Ishiguro, C.; Iwamoto, K.-I.;
Higashino, T. Chem. Pharm. Bull. 1997, 45, 1254. (f) Tam, S. W.; Jimenez,
L.; Diederich, F. J. Am. Chem. Soc. 1992, 114, 1503. (g) Inoue, H.;
Higashiura, K. J. Chem. Soc., Chem. Commun. 1980, 549. (h) Shinkai, S.;
Yamashita, T.; Kusano, Y.; Manabe, O. J. Org. Chem. 1980, 45, 4947.
(i) Castells, J.; Pujol, F.; Llitjo´s, H.; Moreno-Man˜as, M. Tetrahedron 1982,
38, 337. (j) Castells, J.; Llitjo´s, H.; Moreno-Man˜as, M. Tetrahedron Lett.
(10) For selected related, recent preparations of lactones via NHC
catalysis, see: (a) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode,
J. W. J. Am. Chem. Soc. 2010, 132, 8810. (b) Ryan, S. J.; Candish, L.;
Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176. (c) Phillips, E. M.;
Wadamoto, M.; Roth, H. S.; Ott, A. W.; Scheidt, K. A. Org. Lett. 2009,
11, 105. (d) Wang, L.; Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891. (e)
Wang, X.-N.; Shao, P.-L.; Lv, H.; Ye, S. Org. Lett. 2009, 11, 4029. (f) Li,
G.-Q.; Dai, L.-X.; You, S.-L. Org. Lett. 2009, 11, 1623. (g) Sohn, S. S.;
Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. (h) Glorius,
F.; Burstein, C. Angew. Chem., Int. Ed. 2004, 43, 6205. (i) See also
references cited in ref 14.
1977, 18, 205, and references cited therein
.
(14) Zeitler, K.; Rose, C. A. J. Org. Chem. 2009, 74, 1759.
(15) Yet, L. Chem. ReV. 2003, 103, 4283.
Org. Lett., Vol. 12, No. 20, 2010
4553