2106
A. Machara et al.
Letter
Synlett
References and Notes
(19) (a) Lawson, J. A.; DeGraw, J. I. J. Med. Chem. 1977, 20, 165.
(b) Murphy, B.; Snajdr, I.; Machara, A.; Endoma-Arias, M.;
Stamatatos, T. C.; Cox, D. P.; Hudlicky, T. Adv. Synth. Catal. 2014,
356, 2679.
(1) References to oxycodone/oxymorphone preparation by peracid
oxidation of thebaine or oripavine: (a) Freund, M.; Speyer, E. J.
Prakt. Chem. 1916, 94, 135. (b) Gates, M.; Boden, R. M.;
Sundararaman, P. J. Org. Chem. 1989, Oxidation of 5-alkyl the-
baine derivatives: 54, 972. (c) Hosztafi, S.; Simon, C.; Makleit, S.
Synth. Commun. 1992, 22, 2527. (d) Hauser, F. M.; Chen, T.-K.;
Carroll, F. I. J. Med. Chem. 1974, 17, 1117. (e) Iijima, I.;
Minamikawa, J.; Jacobson, A. E.; Brossi, A.; Rice, K. C.; Klee, W. A.
J. Med. Chem. 1978, 21, 398. (f) Zhang, A.; Csutoras, C.; Zong, R.;
Neumeyer, J. L. Org. Lett. 2005, 7, 3239.
(2) Cyanogen bromide: (a) von Braun, J. Ber. Dtsch. Chem. Ges. 1900,
33, 1438. Chloroformate: (b) Cooley, J. H.; Evain, E. J. Synthesis
1989, 1. (c) Rice, K. C. J. Org. Chem. 1975, 40, 1850. (d) Rice, K. C.;
May, E. L. J. Heterocycl. Chem. 1977, 14, 665.
(3) Carroll, R. J.; Leisch, H.; Scocchera, E.; Hudlicky, T.; Cox, D. P.
Adv. Synth. Catal. 2008, 350, 2984.
(20) Key Experimental Procedures
N-Cyclopropylmethyl Nororipavine Methyl Bromide (7b)
A. From Chloride Salt 7a
Compound 7a (0.150 g, 0.39 mmol) was dissolved in
a
minimum amount of aq MeOH (H2O–MeOH, 3:1). The solution
was filtered through a column packed with Dowex®-1 resin
(Sigma, strongly basic bromine loaded, 50–100 mesh) and
eluted with distilled H2O (500 mL). The majority of the solvent
was removed under reduced pressure. The residue was lyo-
philized to give the title compound 7b as a white solid (0.16 g,
95%). 1H NMR and 13C NMR spectra were identical to the spectra
of compound 7a. MS–FAB+: m/z = 785 [(C22H26NO3)2Br]+.
B. From Oripavine and Cyclopropylmethyl Bromide
A flame-dried, argon-purged round-bottomed flask with an
attached reflux condenser was charged a suspension of ori-
pavine (1.84 g, 6.18 mmol) in anhydrous DMF (10 mL). Cyclo-
propylmethyl bromide (1.8 mL, 18.5 mmol, 3.0 equiv) was
added to the vigorously stirred suspension of oripavine in one
portion and at r.t. The flask was immersed in an 80 °C oil bath,
and the mixture was stirred under argon atmosphere for 12 h.
After cooling, an aliquot was analyzed by HPLC (285 nm) and
determined to contain approximately 3.6% (integration, area
under curve) oripavine (as the HBr salt). NaHCO3 (0.02 g, 0.24
mmol, 4 mol%) was added to the reaction mixture, which was
stirred for 1 h prior to the addition of additional cyclopropyl-
methyl bromide (0.30 mL, 3.1 mmol, 0.5 equiv) at r.t. The reac-
tion mixture was immersed in the 80 °C oil bath for an addi-
(4) (a) Scammels, P. J.; Orbell, G. WO 2011032214, 2011.
(b) McCamley, K.; Ripper, J. A.; Singer, R. D.; Scammells, P. J.
J. Org. Chem. 2003, 68, 9847. (c) Thavaneswaran, S.; Scammells,
P. J. Bioorg. Med. Chem. Lett. 2006, 16, 2868.
(5) Chaudhary, V.; Leisch, H.; Moudra, A.; Allen, B.; De Luca, V.; Cox,
D. P.; Hudlicky, T. Collect. Czech. Chem. Commun. 2009, 74, 1179.
(6) Other methods of N- and O-demethylation, for thioethoxide:
see: (a) Feutrill, G. I.; Mirrington, R. N. Tetrahedron Lett. 1970,
16, 1327. Thioethoxide under microwave irradiation:
(b) Cvengros, J.; Neufeind, S.; Becker, A.; Schmaltz, H.-G. Synlett
2008, 1993. Thiopropoxide: (c) Lawson, J. A.; DeGraw, J. I. J. Med.
Chem. 1977, 20, 165. Thiopropoxide: (d) Hutchins, C. W.;
Cooper, G. K.; Purro, S.; Rapoport, H. J. Med. Chem. 1981, 24, 773.
Thiopropoxide: (e) Michne, W. F. J. Med. Chem. 1978, 21, 1322.
BBr3: (f) Rice, K. C. J. Med. Chem. 1977, 20, 164. NbCl6: (g) Sudo,
Y.; Arai, S.; Nishida, A. Eur. J. Org. Chem. 2006, 752.
(7) For demethylation of morphine alkaloids by thiolate anions,
see: Manoharan, T. S.; Madyastha, K. M.; Bali Singh, B.;
Bhatnagar, S. P.; Weiss, U. Synthesis 1983, 809.
(8) (a) Werner, L.; Machara, A.; Adams, D. R.; Cox, D. P.; Hudlicky, T.
J. Org. Chem. 2011, 76, 4628. (b) Hudlicky, T.; Carroll, R.; Leisch,
H.; Machara, A.; Werner, L.; Adams, D. R. WO 2010121369 A1,
2010.
(9) Machara, A.; Cox, D. P.; Hudlicky, T. Heterocycles 2012, 84, 615.
(10) Goldberg, L. I.; Merz, H.; Stockhaus, K. US 4171186-A, 1979.
(11) Cantrell, G. L.; Halvachs, R. E. WO 2004043964 A2, 2004.
(12) Dlubala, A. WO 2008034973, 2008; US 20080214817, 2008
(13) (a) Wang, P. X.; Cantrell, G. L.; Halvachs, R. E.; Roesch, K. R.;
Buehler, H. J.; Haar, J. P. Jr. US 8669366-B2, 2014. (b) Doshan, H.
D.; Perez, J. WO 2006127899, 2006.
(14) Weigl, U.; Schar, P.; Stutz, A. US 20100168427 A1, 2010; WO
2008138605, 2008
(15) Sun, H.; Dan, C.; Luo, J.; Ye, W.; Lin, B.; Zhang, D.; Liao, W. WO
2012010106, 2012.
tional
8 h. Analysis by HPLC (285 nm) revealed that
approximately 1% oripavine remained in the reaction mixture.
The reaction mixture (fine beige slurry) was cooled to r.t. and
filtered through a fine-fritted funnel. The residue was washed
with MeOH (1.5 mL), and the product precipitated after slow
addition of the filtrate to a vigorously stirred volume of toluene
(ca. 100 mL). After the precipitate was filtered and washed with
toluene (2 × 10 mL), it was dried under vacuum to provide a
slightly off-white solid in greater than quantitative yield. This
material was stirred in acetone (50 mL) at r.t. for 2 h prior to a
second filtration. The solid was collected and dried under
vacuum to yield 2.60 g (94% yield) of N-cyclopropylmethyl ori-
pavine ammonium bromide salt (7b) as a white, free-flowing
solid; mp 194–200 °C; isomeric ratio determined by HPLC (S/R =
2.6:1).
R-Isomer
20
Mp 219–221 °C (EtOH); Rf = 0.30 (CH2Cl2–MeOH, 5:1); [α]D
–109.38 (c 1, MeOH). H NMR (600 MHz, DMSO): δ = 9.37 (s, 1
1
H), 6.62 (d, J = 8.1 Hz, 1 H), 6.55 (d, J = 8.1 Hz, 1 H), 6.01 (d,
J = 6.6 Hz, 1 H), 5.42 (s, 1 H), 5.29 (d, J = 6.6 Hz, 1 H), 4.67 (d,
J = 7.2 Hz, 1 H) 3.71 (m, 1 H), 3.70 (m, 1 H), 3.61 (s, 3 H), 3.45
(dd, J = 13.5, 4.6 Hz, 1 H), 3.39 (dd, J = 13.7, 7.6 Hz, 1 H), 3.29
(ddd, J = 13.2, 13.2, 4.0 Hz, 1 H) 3.19 (s, 3 H), 3.06 (dd, J = 19.4,
7.2 Hz, 1 H), 2.59 (ddd, J = 14.1, 14.1, 5.1 Hz, 1 H), 1.86 (dd,
J = 14.2, 2.9 Hz, 1 H), 1.21 (m, 1 H), 0.75 (m, 2 H), 0.51 (m, 1 H),
0.44 (m, 1 H). 13C NMR (150 MHz, DMSO): δ = 154.6, 143.5,
140.4, 132.6, 124.1, 122.5, 120.2, 119.8, 117.6, 96.1, 87.2, 68.1,
67.1, 55.6, 54.0, 46.1, 44.2, 31.5, 30.4, 5.1, 4.4, 4.2.
(16) For the synthesis of (S)-methylnaltrexone, see: Wagoner, H.;
Sanghvi, S. P.; Boyd, T. A.; Verbicky, C.; Andruski, S. WO
2006127898, 2006.
(17) Wang, P. X.; Jiang, T.; Cantrell, G. L.; Bereberich, D. W. WO
2008118654 A1, 2008.
(18) For related work on thebaine, see: (a) López, D.; Quiñoá, D.;
Riguera, R. Tetrahedron Lett. 1994, 35, 5727. (b) Lopez, D.;
Quinoa, E.; Riguera, R. J. Org. Chem. 2000, 65, 4671.
S-Isomer
Mp 195–197 °C (MeOH–i-PrOH); Rf = 0.28 (CH2Cl2–MeOH, 5:1);
[α]D20 –43.73 (c 1.0, MeOH). 1H NMR (600 MHz, DMSO): δ = 9.37
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2101–2108