Journal of the American Chemical Society
ARTICLE
3 and 4. The p-methoxyphenyl group for compounds 3 and 4
interacts more extensively with the protein than seen in com-
pound 1. This could result in tightening of the S10ꢀligand
interface around the smaller ligands.
proteomics. E.J.T. acknowledges financial support for his re-
search efforts from the NIH (1R01GM57179).
When Krishnamurthy et al. first described the interfacial
mobility model, they defined ligand size as the number of “distal
residues” contacted.1 In the context of human carbonic anhy-
drase, the distal residues were amino acids at an increased
distance from the catalytic zinc in the conical active site. Because
SCD has an active site groove, we originally thought to define
ligand size as a function of subpockets occupied. This assumption
is flawed because small changes in ligand structure can drama-
tically alter the binding mode; that is, the absence of the isopropyl
moiety allowed reorientation of the pyridyl moiety in the active
site. While a priori we had expected to see a linear trend in protein
contraction, this ligand rearrangement in the active site caused
compound pairs 1/2 and 3/4 to give similar results despite
possessing moieties that could have bound additional subpock-
ets. The small ligands 3/4 bind loop 218ꢀ222 and R-helix
195ꢀ201 in addition to the catalytic zinc. The large ligands 1/2
interact with these residues as well as loop 162ꢀ164 and β-sheet
165ꢀ166. Once “ligand size” was defined by the secondary
structural elements involved in ligand binding, which correlates
closely with residues contacted, the degree of protein contraction
correlates well with “ligand size”. Thus, trends in protein con-
traction and thermodynamics are in good accord with those
predicted by the interfacial mobility model.1
’ REFERENCES
(1) Krishnamurthy, V. M.; Bohall, B. R.; Semetey, V.; Whitesides,
G. M. J. Am. Chem. Soc. 2006, 128, 5802.
(2) Hornig, J. F.; Hirschfelder, J. O. J. Chem. Phys. 1952, 20, 1812.
(3) London, F. Z. Phys. 1930, 63, 245.
(4) Margenau, H. J. Chem. Phys. 1938, 6, 896.
(5) Chen, L.; Rydel, T. J.; Fei, G.; Dunaway, C. M.; Pikul, S.;
Dunham, K. M.; Barnett, B. L. J. Mol. Biol. 1999, 293, 545.
(6) Li, Y.-C.; Zhang, Z.; Melton, R.; Ganu, V.; Gonnella, N. C.
Biochemistry 1998, 37, 14048.
(7) Parker, M. H.; Ortwine, D. F.; O’Brien, P. M.; Lunney, E. A.;
Banotai, C. A.; Mueller, W. T.; McConnell, P.; Brouillette, C. G. Bioorg.
Med. Chem. Lett. 2000, 10, 2427.
(8) MacPherson, L. J.; et al. J. Med. Chem. 1997, 40, 2525.
(9) MacPherson, L. J.; Parker, D. T. A61K031-44; Ciba-Geigy
Corp.: U.S., 1997; US 5646167, p 31.
(10) Lindorff-Larsen, K.; Best, R. B.; DePristo, M. A.; Dobson,
C. M.; Vendruscolo, M. Nature 2005, 433, 128.
(11) Philippopoulos, M.; Lim, C. Proteins: Struct., Funct., Bioinf.
1999, 36, 87.
(12) Wand, A. J. Nat. Struct. Biol. 2001, 8, 926.
(13) Yao, J.; Eliezer, D.; Wright, P. E.; Dyson, H. J. Biochemistry
2001, 40, 3561.
(14) Chen, D. H.; Rhee, K. W.; Martin, C.; Sloan, D.; Callender, R.;
Yue, K. T. Biophys. J. 1987, 51, A311.
(15) Deng, H.; Pande, C.; Callender, R. H.; Ebrey, T. G. Photochem.
Photobiol. 1985, 41, 467.
(16) Kakitani, H.; Kakitani, T.; Rodman, H.; Honig, B.; Callender, R.
J. Phys. Chem. 1983, 87, 3620.
(17) Callender, R.; Deng, H. Annu. Rev. Biophys. Biomol. Struct. 1994,
23, 215.
(18) Callender, R.; Deng, H.; Gilmanshin, R. J. Raman Spectrosc.
1998, 29, 15.
(19) Proteins: Structure, Function, and Engineering; Biswas, B. B., Roy,
S., Eds.; Plenum Press: New York, 1995; Vol. 24.
(20) Wilfong, E. M.; Locklear, U. N.; Toone, E. J. Bioorg. Med. Chem.
Lett. 2010, 20, 280.
(21) Fei, X.; Zheng, Q. H.; Hutchins, G. D.; Liu, X.; Stone, K. L.;
Carlson, K. A.; Mock, B. H.; Winkle, W. L.; Glick-Wilson, B. E.; Miller,
K. D.; Fife, R. S.; Sledge, G. W.; Sun, H. B.; Carr, R. E. J. Labelled Compd.
Radiopharm. 2002, 45, 449.
’ CONCLUSIONS
The combination of results from thermodynamic data, crystal-
lography, and Raman spectroscopy presented here provides
consistent experimental support for the interfacial mobility
model for the binding of the CGS ligand series to stromelysin-
1. Additional work is needed in a variety of protein systems to
verify the generality of these findings. Two potential models are
FK-506 binding protein (FKBP) and Src-SH2 domain as both
proteins contain a single tryptophan moiety. In the case of FKBP,
the tryptophan is located at the seat of the hydrophobic pocket;
the tryptophan for the Src-SH2 domain is buried deep within the
protein interior.
(22) Minor, W.; Cymborowski, M.; Otwinowski, Z. Acta Phys. Pol., A
2002, 101, 613.
’ ASSOCIATED CONTENT
(23) Pavlovsky, A. G.; Williams, M. G.; Ye, Q. Z.; Ortwine, D. F.;
Purchase, C. F., II; White, A. D.; Dhanaraj, V.; Roth, B. D.; Johnson,
L. L.; Hupe, D. J.; Humblet, C.; Blundell, T. L. Protein Sci. 1999, 8, 1455.
(24) McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read,
R. J. Acta Crystallogr., Sect. D 2005, 61, 458.
S
Supporting Information. Complete refs 8 and 41, de-
b
tailed ligand synthesis and X-ray crystallography refinement
details, protein superimposition data, and supporting Raman
spectra. This material is available free of charge via the Internet at
(25) Storoni, L. C.; McCoy, A. J.; Read, R. J. Acta Crystallogr., Sect. D
2004, 60, 432.
(26) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr.,
Sect. D 1997, 53, 240.
(27) Emsley, P.; Cowtan, K. Acta Crystallogr., Sect. D: Biol. Crystal-
logr. 2004, 60, 2126.
(28) Davis, I. W.; Murray, L. W.; Richardson, J. S.; Richardson, D. C.
Nucleic Acids Res. 2004, 32, W615.
’ AUTHOR INFORMATION
Corresponding Author
(29) Maiti, R.; Van Domselaar, G. H.; Zhang, H.; Wishart, D. S.
Nucleic Acids Res. 2004, 32, W590.
’ ACKNOWLEDGMENT
E.M.W. acknowledges financial support for her training from
the NIH (5T32GM007171). T.L.G. and C.M.H. acknowledge
financial support for their research efforts from the NIH (U54-
NS058183). J.H.N. acknowledges financial support from the
Scottish Funding Council (Reference SULSA) for structural
(30) DeLano, W. L. DeLano Scientific: Palo Alto, CA, 2007.
(31) Edelhoch, H. Biochemistry 1967, 6, 1948.
(32) Christensen, T.; Gooden, D. M.; Kung, J. E.; Toone, E. J. J. Am.
Chem. Soc. 2003, 125, 7357.
(33) Grunwald, E.; Steel, C. J. Am. Chem. Soc. 1995, 117, 5687.
11522
dx.doi.org/10.1021/ja1098287 |J. Am. Chem. Soc. 2011, 133, 11515–11523