10.1002/chem.202004620
Chemistry - A European Journal
FULL PAPER
and concentration-dependent photoswitching. Interestingly, 5c
with a maximum possibility of -conjugation and the lowest
HOMO-LUMO gap exhibited solvatochromism. The max
corresponding to the * absorption feature of 5c exhibited a
maximum value of 390 nm in DMSO, whereas it shifted up to
364 nm in chloroform. This trend has a linear correlation with the
hydrogen bond acceptor ability () of the various solvents
(Figure 3c,d and supporting Section S7).
Acknowledgements
We are grateful to the Science and Engineering Research Board
(SERB), New Delhi (CRG/2019/005744) for financial support.
We are also thankful to IISER Mohali for the financial support,
the departmental and central research facilities, and also the
NMR, HRMS, and other instrumentation support. DG, AKG, and
HK thank MHRD, PK thanks CSIR (09/947(0077)/2016-EMR-1),
and AM thanks DST INSPIRE for their Research Fellowships,
respectively. We are thankful to the Dr. Santanu Kumar Pal and
Ms. Indu Bala for helping in POM studies. We are thankful to Dr.
P. Anbarasan, IIT Madras for helping in the recording of solid-
state NMR. We thank Mr. Mayank Saraswat for helping in the
use of Root program.
The flexible connections between photoswitches and the core
units make the designs 6, 7, and 8 more advantageous. Due to
the absence of -conjugation, the photoswitches are
independent. Also, the availability of more room due to the
conformational flexibility imparts solid-state photoswitching
feasible. We illustrated such solid-state photoswitching using the
Keywords: Azo(hetero)arenes
Bistability • Sol-gel phase transitions • Photochromism
• Multiple photoswitches •
tripodal system 6 that exhibited
a fast switching with a
[1] a) F. Cisnetti, R. Ballardini, A. Credi, M. T. Gandolfi, S. Masiero, F. Negri,
S. Pieraccini, G. P. Spada, Chem.–Eur. J. 2004, 10, 2011–2021; b) A.
Galanti, V. Diez-Cabanes, J. Santoro, M. Valášek, A. Minoia, M. Mayor, J.
Cornil, P. Samorì, J. Am. Chem. Soc. 2018, 140, 16062–16070; c) C.
Slavov, C. Yang, L. Schweighauser, C. Boumrifak, A. Dreuw, H. A.
Wegner, J. Wachtveitl, Phys. Chem. Chem. Phys. 2016, 18, 14795–
14804.
contrasting color change upon irradiation at 365 nm. More
importantly, the forward switching can be light-induced
(photochromism), whereas the reverse step needs temperature
(thermochromism) (Figure 3e-g). Although other designs such as
2a-c, 3a-c, and 4a-c are also capable of such solid-state
photoswitching, the color changes and fast switching are
characteristics of 6, and 7, which make them useful in the
potential applications such as energy storage devices and
rewritable image printing. The overall impact of the variations in
the design in terms of changes associated with the selected
properties of the photoswitches is summarised (Figure 3h).
[2] a) D. Bléger, J. Dokić, M. V. Peters, L. Grubert, P. Saalfrank, S. Hecht, J.
Phys. Chem. B. 2011, 115, 9930–9940; b) Á. Moneo, G. C. Justino, M. F.
N. N. Carvalho, M. C. Oliveira, A. M. M. Antunes, D. Bléger, S. Hecht, J.
P. Telo, J. Phys. Chem. A. 2013, 117, 14056−14064.
[3] a) J. Robertus, S. F. Reker, T. C. Pijper, A. Deuzeman, W. R. Browne, B.
L. Feringa, Phys. Chem. Chem. Phys. 2012, 14, 4374–4382; b) J.
Bahrenburg, C. M. Sievers, J. B. Schönborn, B. Hartke, F. Renth, F.
Temps, C. Näther, D. Sönnichsen, Photochem. Photobiol. Sci. 2013, 12,
511–518; c) J. Kind, L. Kaltschnee, M. Leyendecker, C. M. Thiele, Chem.
Commun. 2016, 52, 12506-12509; d) A. Galanti, J. Santoro, R.
Mannancherry, Q. Duez, V. Diez-Cabanes, M. Valášek, J. D. Winter, J.
Cornil, P. Gerbaux, M. Mayor, P. Samorì, J. Am. Chem. Soc. 2019, 141,
9273−9283. e) I. C–Y. Hou, V. Diez-Cabanes, A. Galanti, M. Valášek, M.
Mayor, J. Cornil, A. Narita, P. Samorì, K. Müllen, Chem. Mater. 2019, 31,
6979–6985.
Conclusions
Through this investigation, we have systematically designed and
synthesized 18 C3 symmetric tripodal multiple azo(hetero)arenes
containing photoswitchable systems. By varying the core, linker,
the relative position of the azo group, and the photoswitches, the
photoswitching characteristics, and thermal stability of the
metastable states have been analysed. Based on the studies,
the following key outcomes have been envisaged: (a) Albeit
moderate to excellent photoswitching in the majority of the cases,
the efficiency in the forward and reverse isomerization lies in the
order (based on the orientation of azo group): para > meta >
ortho; Among the target systems, 3c followed by 4c showed the
best photoswitching in both directions. (b) Flexibility allows
higher % forward photoswitching, and the systems to behave
like three independent photoswitches, however, limits the
reverse isomerization; Also, it enables the solid-state
photoswitching. (c) The thermal stability of the metastable states
strongly depends on the relative position of the azo group and
follows the trend: meta > ortho > para. Indeed, the first step is
the fastest among the three consecutive isomerization steps,
whereas the third step is the rate determining step; (d) The N-
methylation of the amides or the incorporation of
azoheteroarenes with methyl groups in the heterocycles
improves the solubility, photoswitching efficiency, and also the
thermal stability of the metastable states. Through these studies,
we also demonstrated that subtle changes in the C3 symmetric
tripodal design can cause a variety of outcomes such as photo-
and thermochromism, solvatochromism, and reversible photo-
responsive sol-gel phase transitions. These important
[4] a) R. Reuter, H. A. Wegner, Chem.–Eur. J. 2011, 17, 2987–2995; b) R.
Reuter, H. A. Wegner, Org. Lett. 2011, 13, 5908–5911; c) C. Slavov, C.
Yang, L. Schweighauser, H. A. Wegner, A. Dreuw, J. Wachtveitl,
ChemPhysChem. 2017, 18, 2137-2141; d) A. Vlasceanu, M. Koerstz, A.
B. Skov, K. V. Mikkelsen, M. B. Nielsen, Angew. Chem. Int. Ed. 2018, 57,
6069 –6072; e) A. H. Heindl, J. Becker, H. A. Wegner, Chem. Sci. 2019,
10, 7418–7425; (f) A. H. Heindl, L. Schweighauser, C. Logemannb, H. A.
Wegner, Synthesis. 2017, 49, 2632–2639.
[5] a) K. Kreger, P. Wolfer, H. Audorff, L. Kador, N. Stingelin-Stutzmann, P.
Smith, H-W. Schmidt, J. Am. Chem. Soc. 2010, 132, 509–516; b) P.
Wolfer, H. Audorff, K. Kreger, L. Kador, H-W. Schmidt, N. Stingelinaef, P.
Smith, J. Mater. Chem. 2011, 21, 4339–4345; c) L. M. Goldenberg, L.
Kulikovsky, O. Kulikovska, J. Tomczyk, J. Stumpe, Langmuir. 2010, 26,
2214–2217.
[6] a) M. Pfletscher, C. Wölper, J. S. Gutmann, M. Mezger, M. Giese, Chem.
Commun. 2016, 52, 8549-8552; b) S. Devi, I. Bala, S. P. Gupta, P.
Kumar, S. K. Pal, S. Venkataramani, Org. Biomol. Chem. 2019, 17, 1947–
1954.
[7] J. Lee, S. Oh, J. Pyo, J-M. Kim, J. H. Je, Nanoscale. 2015, 7, 6457–6461.
[8] (a) Y-J. Choi, D-Y. Kim, M. Park, W-J. Yoon, Y. Lee, J-K. Hwang, Y-W.
Chiang, S-W. Kuo, C-H. Hsu, K-U. Jeong, ACS Appl. Mater. Interfaces.
2016, 8, 9490−9498; b) S. Lee, S. Oh, J. Lee, Y. Malpani, Y-S. Jung, B.
Kang, J.Y. Lee, K. Ozasa, T. Isoshima, S. Y. Lee, M. Hara, D.
Hashizume, J. M. Kim, Langmuir. 2013, 29, 5869−5877; c) Y. Huang, D-
H. Kim, Nanoscale, 2012, 4, 6312-6317; d) R. Reuter, H. A. Wegner,
Chem. Commun., 2013, 49, 146-148; e) M. Yamauchi, K. Yokoyama, N.
Aratani, H. Yamada, S. Masuo, Angew. Chem. Intl. Ed. 2019, 58, 14173 –
14178; Angew. Chem. 2019, 131, 14311 –14316; f) I. Abe, M. Hara, T.
Seki, S. J. Cho, M. Shimizu, K. Matsuura, H-K. Cheong, J. Y. Kim, J. Oh,
J. Jung, M. Han, J. Mater. Chem. C. 2019, 7, 2276-2282.
conclusions
will
be
helpful
in
designing
multiple
azo(hetero)arenes incorporated systems for
applications.
a
variety of
[9] (a) C. Probst, C. Meichner, H. Audorff, R. Walker, K. Kreger, L. Kador, H-
W. Schmidt, J. Polym. Sci., Part B: Polym. Phys. 2016, 54 , 2110–2117;
b) X. Liu, X-S. Luo, H-L. Deng, W. Fan, S. Wang, C. Yang, X-Y. Sun, S-L.
Chen, M-H. Huang, Chem. Mater. 2019, 31, 5421−5430.
Conflicts of interest
There are no conflicts to declare.
[10] S. Devi, A. K. Gaur, D. Gupta, M. Saraswat, S. Venkataramani,
ChemPhotoChem. 2018, 2, 806−810.
This article is protected by copyright. All rights reserved.