Journal of the American Chemical Society
Page 8 of 9
(IEFPCM)26 during the single point calculations. In gener-
al, solvation effects were found to be rather small as
demonstrated for the relative stabilities of E-21 and K-21
in the Supporting Information (Table S1, p. S8). Through-
out this investigation, an ultrafine grid corresponding to
99 radial shells and 590 angular points was used for the
numerical integration of the density.27 All density func-
tional theory calculations were performed with Gaussian
09.28
(4) For excellent and comprehensive discussion of the genera-
1
2
3
4
5
6
7
8
tion, reactivity, and spectroscopic/structural properties of non-
heteroatom substituted enols, see: a) Rappoport, Z. Ed. The
Chemistry of Enols, John Wiley & Sons: New York, 1990. b) Rap-
poport, Z.; Biali, S. E., Acc. Chem. Res. 1988, 21, 442-449.
(5) Berkessel, A.; Elfert, S.; Yatham, V. R.; Etzenbach-Effers,
K.; Teles, J. H. Angew. Chem. Int. Ed. 2010, 49, 7120 – 7124.
(6) C-1 to C-n denotes the carbenes discussed in this study,
A-1 to A-m the aldehydes. Of the ketones and enols formed, K-
nm indicates the ketone formed from carbene C-n and aldehyde
A-m, E-nm the corresponding enol composed of C-n and A-m.
(7) Meyer, D.; Neumann, P.; Koers, E.; Sjuts, H.; Lüdtke, S.;
Sheldrick, G. M.; Ficner, R.; Tittmann, K. Proc. Natl. Acad. Sci.
USA 2012, 109, 10867 – 10872.
9
VII. ASSOCIATED CONTENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information: Experimental details of the prep-
aration and characterization of the ketones K-11, K-21-26, K-
31 and K-41; X-ray data of p-bromophenyl glyoxal hydrate
and of the ketone K-31,29 Cartesian coordinates and energies
of all calculated structures, graphical visualization of lowest-
energy conformers, and details of computational methods.
(8) Reid, C. M.; Ebikeme, C.; Barrett, M. P.; Patzewitz, E.-M.;
Müller, S.; Robins, D. J.; Sutherland, A. Bioorg. Med. Chem. Lett.
2008, 18, 2455 – 2458.
(9) Schönberg, A.; Singer, E.; Eckert, P. Chem. Ber. 1980, 113,
2823 – 2826.
(10) Wanzlick, H.-W.; Schikora, E. Chem. Ber. 1961, 94, 2389 –
2393. The carbene C-3 is not persistent as monomer, and once
formed spontaneously dimerizes to the "Wanzlick dimer".
(11) Similar 2-propyl rotation occurs in the corresponding di-
aminoenols: see refs. 3,4. In these cases, different rates of rota-
tion are found depending on the cis/trans position of the N-
Dipp-substituent at the enol's C=C double bond.
(12) Maji, B.; Breugst, M.; Mayr, H. Angew. Chem. Int. Ed. 2011,
50, 6915 – 6919.
(13) a) Grimme, S.; Huenerbein, R.; Ehrlich, S. ChemPhysChem
2011, 12, 1258–1261. b) Wagner, J. P.; Schreiner, P. R. Angew.
Chem. Int. Ed. 2015, 54, 12274–12296.
(14) a) Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR: Hy-
drophobic, Electronic, and Steric Constants, American Chemical
Society, Washington, D.C., 1995. b) McDaniel, D. H.; Brown, H.
C. J. Org. Chem. 1958, 23, 420–427.
VIII. AUTHOR INFORMATION
Corresponding Author
*E-mail: berkessel@uni-koeln.de. Fax: (+49) 221-4705102
IX. ACKNOWLEDGMENT
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG), Priority Program "Control of London
Dispersion Interactions in Molecular Chemistry" (SPP 1087,
grant no. BE 998/14-1) and by the Fonds der Chemischen
Industrie (Liebig Fellowship to M.B.). Computations were
performed on the DFG-funded Cologne High Efficiency
Operating Platform for Sciences (CHEOPS).
X. ABBREVIATIONS
(15) Hart, H.; Rappoport, Z.; Biali, S. E. in Rappoport, Z. Ed.
The Chemistry of Enols, John Wiley & Sons: New York, 1990, 481-
589.
Dipp: 2,6-bis(2-propyl)phenyl; Mes: 2,4,6-trimethylphenyl.
XI. REFERENCES
(16) Mahatthanachai, J.; Bode, J.W. Chem. Sci.2012, 3, 192–197.
(17) Note that besides steric hindrance, other intrinsic barriers
to proton transfer may be operative in keto-enol systems: Rich-
ard, J.P.; Amyes, T. L. Acc. Chem. Res. 2001, 34, 981-988.
(18) Banks, J. L.; Beard, H. S.; Cao, Y.; Cho, A. E.; Damm, W.;
Farid, R.; Felts, A. K.; Halgren, T. A.; Mainz, D. T.; Maple, J. R.;
Murphy, R.; Philipp, D. M.; Repasky, M. P.; Zhang, L. Y.; Berne,
B. J.; Friesner, R. A.; Gallicchio E.; Levy, R. M. J. Comput. Chem.
2005, 26, 1752 – 1780.
(19) MacroModel and V. 10.2, Schrödinger, LLC, New York,
NY, 2013.
(20) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
(21) Grimme, S.; Antony, J.; Ehrlich S.; Krieg, H. J. Chem. Phys.
2010, 132, 154104.
(22) Ribeiro, R. F.; Marenich, A. V.; Cramer C. J.; Truhlar, D. G.
J. Phys. Chem. B 2011, 115, 14556 – 14562.
(23) Zhao Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215 –
241.
(24) Weigend F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005,
7, 3297 – 3305.
(25) Goerigk L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13,
6670 – 6688.
(1) Reviews and recent mechanistic studies on N-heterocyclic
carbene catalysis: (a) Chiang, P.-C.; Bode, J. W. TCI MAIL, 2011,
149, 2–17. (b) Grossmann, A.; Enders, D. Angew. Chem. Int. Ed.
2012, 51, 314–325. (c) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.;
Scheidt, K. A. Angew. Chem. Int. Ed. 2012, 51, 11686−11698. (d)
Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511–3522. (e)
Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 2295–2309.
(f) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013,
42, 4906−4917. (g) Sarkar, S. D.; Biswas, A.; Samanta, R. C.; Stu-
der, A. Chem. Eur. J. 2013, 19, 4664−4678. (g) Collett, C. J.;
Massey, R. S.; Maguire, O. R.; Batsanov, A. S.; O'Donoghue, A. C.;
Smith, A. D. Chem. Sci. 2013, 4, 1514-1522. (h) Hopkinson, M. N.;
Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485–496.
(i) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47,
696–707. (j) Martin, D.; Canac, Y.; Lavallo, V.; G. Bertrand, G. J.
Am. Chem. Soc. 2014, 136, 5023–5030 (k) D. M. Flanigan, F. Ro-
manov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115,
9307-9387. (l) Collett, C. J.; Massey, R. S.; Taylor, J. E.; Maguire,
O. R.; O'Donoghue, A. C.; Smith, A. D. Angew. Chem. Int. Ed.
2015, 54, 6887-6892.
(2) a) Breslow, R. J. Am. Chem. Soc. 1957, 79, 1762 – 1763. b)
Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719 – 3726.
(26) Cancès, E.; Mennucci B.; Tomasi, J. J. Chem. Phys. 1997,
107, 3032 – 3041.
(27) Wheeler S. E.; Houk, K.N. J. Chem. Theory Comput. 2010,
6, 395 – 404.
(28) Gaussian 09: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;
Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Carica-
(3) a) Berkessel, A.; Elfert, S.; Yatham, V. R.; Neudörfl, J.-M.;
Schlörer, N. E.; Teles, J. H. Angew. Chem. Int. Ed. 2012, 51, 12370 –
12374. b) Berkessel, A.; Yatham, V. R.; Elfert, S.; Neudörfl, J.-M.;
Angew. Chem. Int. Ed. 2013, 52 11158-11162.
ACS Paragon Plus Environment