Huang et al.
norepinephrine), glutamate, γ-aminobutyric acid (GABA), and
serotonin (5-hydroxytriptamine). In the past decade, intense
research efforts in the area of neurobiology and pharmacology
of nicotine and related nAChR agonists and antagonists have
led to exciting developments in drug discovery for the treatment
of Parkinson’s and Alzheimer’s (AD) diseases, schizophrenia,
attention deficit/hyperactivity, and Tourette’s syndrome.3,4 Ago-
nist SIB-1508Y (5) and ABT-418 (6), as well as other potentially
active drugs, are presently in clinical trial for AD and Parkin-
son’s diseases.5 Several nicotine-derived drug candidates are
also being developed for the treatment of nicotine addition, as
analgesic and anesthetic agents.1c,6 Novel competitive antagonist
N-n-nicotinium analogues (7) have been, recently, found to
possess selective binding to nAChR subtypes depending on the
lipophilicity of the alkyl groups, opening a new area of selective
antagonists.7 Moreover, (S)-nicotine has been, recently, dem-
onstrated to inhibit amyloid formation by ꢀ-peptides.5a,8 Con-
sequently, new nonaddictive nicotine analogues that can prevent
or retard the development of Alzheimer’s disease will be of
interest in the future. (S)-Nicotine is more bioactive than the
(R) enantiomer,9 as it is also observed for related alkaloid
compounds. Surprisingly, appropriate methods for the enanti-
oselective synthesis of nicotinic derivatives are scarce,3e,f and
usually, the desired enantiomer is obtained by costly resolution
methods.2a Hence, convenient and versatile asymmetric synthetic
methods that permit the introduction of a chiral pyrrolidine-
based ring skeleton, offering diverse structural features in the
design of new enantiopure nicotinic compound, are needed.
In general, enantioenriched compounds with a stereogenic
carbon center R to the amino group are being extensively used
as key intermediaries in the synthesis of a large variety of
pharmaceuticals,10 chiral auxiliaries,11 catalysts,12 and resolving
agents.13 Accordingly, the development of facile and efficient
synthetic strategies that provide highly enantiopure amines at
low cost has received, recently, an increasing amount of
attention.14 Organoborane reagents, especially oxazaborolidine-
borane complexes, have achieved wide recognition for the
asymmetric reduction of ketones due to their outstanding
enantioselectivity, predictable absolute stereochemistry, and low
environmental impact.12 Noteworthy, the use of these chiral
boron-based reagents for the CdN reduction under catalytic
conditions remains limited due to their relatively modest
enantioselectivity and lack of reproducibility in some cases.12–17
Although the asymmetric reduction of oxime ethers with borane-
based catalysts offers a facile and direct approach to obtain
enantioenriched primary amines, more than an stoichiometric
amount of in situ prepared oxazaborolidine has been employed
to obtain a high degree of enantioselectivity.12,14–17 Itsuno et
al.16 described the first catalytic reduction of acetophenone
O-benzyl oxime using the B-H oxazaborolidine-borane com-
plex prepared in situ by the reaction of 10 mol % of (S)-
diphenylvalinol with 1 equiv of borane, achieving only 52% ee
of (S)-1-phenylethanamine. Fontaine et al.17c used 2.5 equiv of
diphenylvalinol-B-H oxazaborolidine for the reduction of
arylalkyl ketoxime O-benzyl ethers, achieving excellent enan-
tioselectivity and good yield. When the amount of diphenylvali-
(11) (a) Henderson, K. W. Chem. Commun. 2000, 479. (b) Denolf, B.;
Mangelinckx, S.; Tornroos, K. W.; Kimpe, N. D. Org. Lett. 2006, 8, 3129. (c)
Tanuwidjaja, J.; Peltier, H. M.; Ellman, J. A. J. Org. Chem. 2007, 72, 626. (d)
Bloch, R. Chem. ReV. 1998, 98, 1407.
(3) (a) Breining, S. R. Curr. Top. Med. Chem. 2004, 4, 609. (b) Talley, T. T.;
Yalda, S.; Ho, K. Y.; Tor, Y.; Soti, F. S.; Kem, W. R.; Taylor, P. Biochemistry
2006, 45, 8894. (c) Abreo, M. A.; Lin, N. H.; Garvey, D. S.; Gunn, D. E.;
Hettinger, A. M.; Wasicak, J. T.; Pavlik, P. A.; Martin, Y. C.; Donnelly-Roberts,
D. L.; Anderson, D. J.; Sullivan, J. P.; Williams, M.; Arneric, S. P.; Holladay,
M. W. J. Med. Chem. 1996, 39, 817. (d) Newhouse, P. A.; Potter, A.; Lenox,
R. H. Med. Chem. Res. 1993, 2, 628. (e) Felpin, F.-X.; Girard, S.; Vo-Thanh,
G.; Robins, R. J.; Villiéras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305. (f)
Ayers, J. T.; Xu, R.; Dwoskin, L. P.; Crooks, P. A. AAPS J. 2005, 7, E752. (g)
Brennan, M. B. Chem. Eng. News 2000, 78, 23.
(12) (a) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. (b)
Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005,
44, 4212. (c) Peelen, T. J.; Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005,
127, 11598. (d) Liu, T. Y.; Cui, H. L.; Jiang, K.; Du, W.; He, Z. Q.; Chen,
Y. C. Org. Lett. 2007, 9, 3671. (e) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli,
F.; Sambri, L.; Mechiorre, P. Org. Lett. 2007, 9, 1403. (f) Fache, F. S. E.;
Tommasino, M. L.; Lemaire, M. Chem. ReV. 2000, 100, 2159. (g) Dickerson,
T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.; Janda, K. D. J. Org. Chem.
2004, 69, 6603. (h) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem.
ReV. 2003, 103, 2985. (i) GlushkovV. A.;TolstikovA. G.;Russ. Chem. ReV. (Engl.
Transl.)200473581 and refs. cited therein. (j) Cho, B. T. Tetrahe-
dron2006,62,7621 and refs. cited therein.
(4) (a) Holladay, M. W.; Dart, M. J.; Lynch, J. K. J. Med. Chem. 1997, 40,
4169. (b) Latli, B.; D’Amour, K.; Casida, J. E. J. Med. Chem. 1999, 42, 2227.
(c) Nielsen, S. F.; Nielsen, E. O.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med.
Chem. 2000, 43, 2217. (d) Mullen, G.; Napier, J.; Balestra, M.; DeCory, T.;
Hale, G.; Macor, J.; Mack, R.; Loch, J.; Wu, E.; Kover, A.; Verhoest, P.;
Sampognaro, A.; Phillips, E.; Zhu, Y.; Murray, R.; Griffith, R.; Blosser, J.;
Gurley, D.; Machulskis, A.; Zongrone, J.; Rosen, A.; Gordon, J. J. Med. Chem.
2000, 43, 4045. (e) Chelucci, G. Tetrahedron: Asymmetry 2005, 16, 2353.
(5) (a) Bachurin, S. O. Med. Res. ReV. 2003, 23, 48. (b) Vernier, J.-M.; El-
Abdellaoui, H.; Holsenback, H.; Cosford, N. D. P.; Bleicher, L.; Barker, G.;
Bontempi, B.; Chavez-Noriega, L.; Menzaghi, F.; Rao, T. S.; Reid, R.; Sacaan,
A. I.; Suto, C.; Washburn, M.; Lloyd, G. K.; McDonald, I. A. J. Med. Chem.
1999, 42, 1684.
(13) Kozma, D. CRC Handbook of Optical Resolutions Via Diatereomeric
Salt Formation 1st ed.;CRC Press LLC: Boca Raton, FL, 2001.
(14) (a) JohanssonA.;Contemp. Org. Synth. 199566393 and refs. cited therein.
(b) DelouxL.;SrebnikM.;Chem. ReV. 199393763 and refs. cited therein. (c) Davis,
F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (d) Fernández, H.;
Hooper, M. W.; Knight, F. I.; Brown, J. M. Chem. Commun. 1997, 173. (e)
Fernández, H.; Maeda, K.; Hooper, M. W.; Brown, J. M. Chem.—Eur. J. 2000,
6, 1840. (f) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
(15) (a) Bolm, C.; Felder, M. Synlett 1994, 655. (b) Lantos, I.; Flisak, J.;
Liu, L.; Matsunoka, R.; Mendelson, W.; Stevenson, D.; Tubman, K.; Tucker,
L.; Zhang, W.-Y.; Adams, J.; Sorenson, M.; Garigipati, R.; Erhardt, K.; Ross,
S. J. Org. Chem. 1997, 62, 5385. (c) Tillyer, R. D.; Boudreau, C.; Tschaen, D.;
Dolling, U.-H.; Reider, P. J. Tetrahedron Lett. 1995, 36, 4337. (d) Shimizu, M.;
Kamei, M.; Fujisawa, T. Tetrahedron Lett. 1995, 36, 8607. (e) Shimizu, M.;
Tsukamoto, K.; Matsutani, T.; Fujisawa, T. Tetrahedron 1998, 54, 10265. (f)
Masui, M.; Shioiri, T. Tetrahedron Lett. 1998, 39, 5195. (g) Cho, B. T.; Ryu,
M. H. Bull. Korean Chem. Soc. 1994, 15, 191. (h) Demir, A. S. Pure Appl.
Chem. 1997, 69, 105–108. (i) Sakito, Y.; Yoneyoshi, Y.; Suzukamo, G.
Tetrahedron Lett. 1988, 29, 223.
(6) (a) Schmitt, J. D.; Bencherif, M. In Annual Reports in Medicinal
Chemistry; Doherty, A. M., Ed.; Academic Press: New York, 2000; Vol. 35, pp
41–51. (b) Pereira, E. F. R.; Hilmas, C.; Santos, M. D.; Alkondon, M.; Maelicke,
A.; Albuquerque, E. X. J. Neurobiol. 2002, 53, 479.
(7) Wilkins, H., L., Jr.; Grinevich, V. P.; Ayers, J. T.; Crooks, P. A.; Dwoskin,
L. P. J. Pharm. Exp. Ther. 2003, 304.
(8) (a) Palmer, A. M. Trends Pharmacol. Sci. 2003, 23, 426. (b) Salomon,
A. R.; Marcinowski, K. J.; Friedland, R. P.; Zagorski, M. G. Biochemistry 1996,
35, 13568. (c) Liu, Q.; Zhao, B. Br. J. Pharmacol. 2004, 141, 746. (d) Dickerson,
T. J.; Janda, K. D. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8182.
(9) Aceto, M. D.; Martin, B. R.; Uwaydah, I. M.; May, E. L.; Harris, L. S.;
Izazola-Conde, C.; Deway, W. L.; Bradshaw, T. J.; Vincek, W. C. J. Med. Chem.
1979, 22, 174.
(16) (a) Itsuno, S.; Sakurai, Y.; Ito, K.; Hirao, A.; Nakahama, S. Bull. Chem.
Soc. Jpn. 1987, 60, 395. (b) Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.;
Ito, K. J. Chem Soc., Perkin Trans. 1 1985, 2039. (c) Itsuno, S.; Sakurai, Y.;
Shimizu, K.; Ito, K. J. Chem. Soc., Perkin Trans. 1 1990, 1859. (d) Inoue, T.;
Sato, D.; Komura, K.; Itsuno, S. Tetrahedron Lett. 1999, 40, 5379.
(17) (a) Itsuno, S.; Matsumoto, T.; Sato, D.; Inoue, T. J. Org. Chem. 2000,
65, 5879. (b) Sailes, H. E.; Watts, J. P.; Whiting, A. J. Chem. Soc., Perkin Trans.
1 2000, 3362. (c) Fontaine, E.; Namane, C.; Meneyrol, J.; Geslin, M.; Serva,
L.; Roussey, E.; Tissandie, S.; Maftouh, M.; Roger, P. Tetrahedron: Asymmetry
2001, 12, 2185. (d) Krzeminski, M. P.; Zaidlewicz, M. Tetrahedron: Asymmetry
2003, 14, 1463. (e) Chu, Y. B.; Shan, Z. X.; Liu, D. J.; Sun, N. N. J. Org.
Chem. 2006, 71, 3998.
(10) (a) Lawrence, S. A. Amines: Synthesis, Properties and Applications;
Cambridge University Press: Cambridge, U.K., 2004. (b) Breuer, M.; Ditrich,
K.; Habicher, T.; Hauer, B.; Keâeler, M.; Sturmer, R.; Zelinski, T. Angew. Chem.,
Int. Ed. 2004, 43, 788. (c) Hieber, G.; Ditrich, K. Chim. Oggi 2001, 19, 16.
(d) Franchini, C.; Carocci, A.; Catalano, A.; Cavalluzzi, M. M.; Corbo, F.; Lentini,
G.; Scilimati, A.; Tortorella, P.; Camerino, D. C.; Luca, A. J. Med. Chem. 2003,
46, 5238. (e) Abreo, M. A.; Lin, N. H.; Garvey, D. S.; Gunn, D. E.; Hettinger,
A. M.; Wasicak, J. T.; Pavlik, P. A.; Martin, Y. C.; Donnelly-Roberts, D. L.;
Anderson, D. J.; Sullivan, J. P.; Stephen, M. W.; Arneric, S. P.; Holladay, M. W.
J. Med. Chem. 1996, 39, 817.
4018 J. Org. Chem. Vol. 73, No. 11, 2008