convenient routes to indole derivatives.5 In the past decade, copper-
catalyzed C-N bond formation via coupling between amines or
amides with aryl halides has received significant attention and
provided a versatile method for the synthesis of a wide range of
arylamines.6 A number of useful synthetic protocols utilizing
various combinations of a copper source, a ligand, a base, and a
solvent have been developed to achieve a high efficiency of the
Ullmann-type amination reaction of various substrates under mild
conditions.7 On the other hand, intramolecular Ullmann coupling
reactions have remained less explored. To the best of our
knowledge, only a few examples of intramolecular copper-catalyzed
amination of aryl (or vinyl) halides have been reported, which led
to the formation of nitrogen heterocyclic compounds.8 Application
of the copper-catalyzed amination methodology for the construction
of the indole ring via a key N(1)-C(7a) bond formation9 has been
demonstrated by the synthesis of pyrazolo[1,5-a]indoles5b and
indole- and 6-azaindole-2-carboxylates.5f
Synthesis of N-Substituted Indole-3-carboxylic
Acid Derivatives via Cu(I)-Catalyzed
Intramolecular Amination of Aryl Bromides
Ferdinand S. Melkonyan, Alexander V. Karchava,* and
Marina A. Yurovskaya
Department of Chemistry, M.V. LomonosoV Moscow State
UniVersity, Moscow 119992, Russia
ReceiVed March 19, 2008
Indole-3-carboxylic acids and the corresponding esters have
found significant use as building blocks for the synthesis of
pharmaceutically important molecules.10 A number of effective
means for the assembly of indole-3-carboxylic acid derivatives
have been developed, which include either the formation of the
A variety of N-alkylated and N-arylated derivatives of methyl
1H-indole-3-carboxylate were synthesized efficiently via
Ullmann-type intramolecular arylamination, using the
CuI-K3PO4-DMF system. This catalytic amination proce-
dure can be performed with good to high yields under mild
conditions under an air atmosphere.
(5) For recent reports, see: (a) Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org.
Lett. 2008, 10, 625-628. (b) Zhu, Y.-M.; Qin, L.-N.; Liu, R.; Ji, S.-J.; Katayama,
H. Tetrahedron Lett. 2007, 48, 6262–6266. (c) Tanimori, S.; Ura, H.; Kirihata,
M. Eur. J. Org. Chem. 2007, 3977–3980. (d) van den Hoogenband, A.; Lange,
J. H. M.; den Hartog, J. A.; Henzen, R.; Terpstra, J. W. Tetrahedron Lett. 2007,
48, 4461–4465. (e) Ohno, H.; Ohta, Y.; Oishi, S.; Fudjii, N. Angew. Chem., Int.
Ed. 2007, 46, 2295–2298. (f) Barberris, C.; Gordon, D.; Thomas, C.; Zhang,
X.; Cusack, K. P. Tetrahedron Lett. 2005, 46, 8877–8880.
(6) For reviews, see: (a) Kienle, M.; Dubbaka, S. R.; Brade, K.; Knochel, P. Eur.
J. Org. Chem. 2007, 4166–4176. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. ReV. 2004, 248, 2337–2364. (c) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400–5449. (d) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
2428–2439. (e) Corbert, J.-P.; Mignani, G. Chem. ReV. 2006, 106, 2651–2710.
(7) Several supporting ligands have been introduced to achieve a high
efficiency of Ullmann coupling under mild reaction conditions, among them: (a)
N,N-Diethylsalicylamide: Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5,
793–796. (b) ꢀ-Diketone: Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006,
128, 8742–8743. (c) ꢀ-Keto ester: Lv, X.; Bao, W. J. Org. Chem. 2007, 72,
3863–3867. (d) 2-Hydroxybenzaldehyde N-phenylhydrazone: Jiang, Q.; Jiang,
D.; Jiang, Y.; Zhao, Y. Synlett 2007, 1836–1842. (e) N-Hydroxyimide: Ma, H.-
C.; Jiang, X.-Z. J. Org. Chem. 2007, 72, 8943–8946. (f) Hyppuric acid : Mao,
J.; Guo, J.; Song, H.; Ji, S.-J. Tetrahedron 2008, 64, 1383–1387. (g) Glyoxale
bis hydrazone: Mino, T.; Harada, Y.; Shindo, H.; Sakamoto, M.; Fujita, T. Synlett
2008, 614–620. (h) Amino acids: Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003,
5, 2453–2455. (i) Amino acids: Cai, Q.; Zhu, W.; Zhang, H.; Zhang, Y. D.; Ma,
D. W. Synthesis 2005, 496–499. (j) N,N-Dimethylaminoethanol: Twieg, H., Jr.;
R., J.; Lu, Z. K.; Huang, S. P. D. Tetrahedron Lett. 2003, 2453–2455. (k) Ethylene
glycol: Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581–
584. (l) 1,10-Phenantroline: Gujadhur, R. K.; Bates, C. G.; Venkataraman, D.
Org. Lett. 2001, 3, 4315–4317. (m) 8-Hydroxyquinoline : Liu, L.; Frohn, M.;
Domingueez, C.; Hungate, R.; Reider, P. J. J. Org. Chem. 2005, 70, 10135–
10138. (n) 1,2-Diamines : Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2002, 124, 7421–7428. (o) rac-1,1′-Binaphthol : Jiang, D.; Fu, H.; Jiang,
Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672–674.
The indole nucleus is one of the most widely distributed
heterocyclic ring systems in nature.1 Also, the indole ring system
has become an important structural component in many synthetic
pharmaceuticals.2 As a result, a great number of various methods
for the preparation of indoles have been developed with use of
intermolecular and intramolecular approaches.3
Recent advances of transition metal chemistry in organic
synthesis have provided new versatile catalytic methodologies for
the synthesis of indoles from various arene derivatives via different
bond formation. Among transition metals, the most extensively
investigated and employed metal for the construction of the indole
ring system was palladium.4 However, recent considerable progress
in copper-catalyzed organic reactions has provided several new
(1) For selected recent reviews on indole-containing natural products, see:
(a) Huguchi, K.; Kawasaki, T. Nat. Prod. Rep. 2007, 24, 843-868. (b) O’Connor,
S. E.; Maresh, J. Nat. Prod. Rep. 2006, 23, 532–547. (c) Kawasaki, T.; Huguchi,
K. Nat. Prod. Rep. 2005, 22, 761–793. (d) Gul, W.; Hamann, M. T. Life Sci.
2005, 78, 442–453. (e) Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278–
311. (f) Lounasmaa, M.; Tolvanen, N. Nat. Prod. Rep. 2000, 17, 175–191.
(2) For selected recent reports, see: (a) Suzen, S. Top. Heterocycl. Chem.
(8) (a) Pyrroles: Pan, Y.; Lu, H.; Fang, Y.; Chen, L.; Qian, J.; Wang, J.; Li,
C. Synthesis 2007, 1242–1246. (b) Pyrrolo[2,3-c]pyridine, see ref 5f. (c) 1-Aryl-
1H-indazoles : Liu, R.; Zhu, Y.; Qin, L.; Ji, S. Synth. Commun. 2008, 38, 249–
254. (d) 2-Aryl-2H-indazoles : Liu, R.; Zhu, Y.; Qin, L.; Ji, S.; Katayama, H.
Heterocycles 2007, 71, 1755–1763. (e) Oxindoles: ref 5d. (f) ꢀ-Lactams: Lu,
H.; Li, C. Org. Lett. 2006, 8, 5365–5367. (g) Other lactams: Hu, T.; Li, C. Org.
Lett. 2005, 7, 2035–2038. (h) Indolines: Yamada, K.; Kubo, T.; Tokuyama, H.;
Fukuyama, T. Synlett 2002, 231–234. (i) 2-Aminobenzimidazoles: Evindar, G.;
Batey, R. A. Org. Lett. 2003, 5, 133–136.
¨
2007, 11, 145–178. (b) Olgen, S.; Kaessler, K.; Nebiog˘lu, D.; Joachim, J. Chem.
Biol. Drug Des. 2007, 70, 547–551. (c) Smart, B. P.; Oslund, R. S.; Walsh,
L. A.; Gelb, M. N. J. Med. Chem. 2006, 49, 2858–2860. (d) Dandia, A.; Singh,
N.; Khaturia, S.; Merienne, C.; Morgant, G.; Loupy, A. Bioorg. Med. Chem.
2006, 14, 2409–2417.
(3) For recent reviews on indole synthesis, see: (a) Gribble, G. W. J. Chem.
Soc., Perkin Trans. 1 2000, 1045–1075. (b) Hamphrey, G. R.; Kuethe, J. T.
Chem. ReV. 2006, 106, 2875–2911. (c) Gilchrist, T. L. J. Chem. Soc., Perkin
Trans. 1 2001, 2491–2515.
(9) For examples of related Pd-catalyzed N-anulation routes to indoles, see:
(a) Fletcher, A. J.; Bax, M. N.; Willis, M. C. Chem. Commun. 2007, 4764–
4766. (b) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int. Ed.
2005, 44, 403–406. (c) Watanabe, M.; Yamamoto, T.; Nishiyama, M. A Angew.
Chem., Int. Ed. 2000, 39, 2501–2504.
(4) For reviews, see ref 3b and the following: (a) Cacchi, S.; Fabrizi, G.
Chem. ReV. 2005, 105, 2873–2920. (b) Patil, S.; Buolamwini, J. K. Curr. Org.
Synth. 2006, 3, 477–498.
10.1021/jo800630v CCC: $40.75
Published on Web 05/10/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 4275–4278 4275