H. Munch et al. / Tetrahedron Letters 49 (2008) 3117–3119
3119
17. Kneeland, D. M.; Ariga, K.; Lynch, V. M.; Huang, C.-Y.; Anslyn, E.
V. J. Am. Chem. Soc. 1993, 115, 10042–10055.
CS2/NEt3/Boc2O
Catalyst (1-3 mol%)
R-NH2
18. Spurlock, L. A.; Porter, R. K.; Cox, W. G. J. Org. Chem. 1972, 37,
1162–1168.
R: Alkyl or Aryl
R-N=C=S
EtOH/ 15 min/ r.t.
19. Stetter, H.; Wulff, C. Chem. Ber. 1962, 95, 2302–2304.
20. Hofmann, A. W. Chem. Ber. 1868, 1, 201–202.
Scheme 2.
21. Analytical data for entry 8: 1H NMR (300 MHz, CDCl3): d 7.35 (dd,
3J 3 Hz, 3J 5 Hz, 1H), 7.25 (s, 1H), 7.05 (d, 3J 5 Hz, 1H), 4.70 (s, 2H);
13C NMR (100 MHz, CDCl3): d 135.2, 130.1, 127.4, 126.4, 123.0,
44.5. GCMS m/z 155. Anal. Calcd for C6H5NS2 (155.24): C, 46.42; H,
3.25; N, 9.02. Found: C, 46.63; H, 3.43; N, 8.97.
22. Kjaer, A.; Jensen, R. B. Acta Chem. Scand. 1956, 10, 141–142.
23. Yamasaki, T.; Kawaminami, E.; Uchimura, F.; Okamoto, Y.;
Okawara, T.; Furukawa, M. J. Heterocycl. Chem. 1992, 29, 825–829.
24. Lukyaneko, N. G.; Kirichenko, T. I.; Scherbakov, S. V. J. Chem.
Soc., Perkin Trans. 1 2002, 2347–2351.
In summary, a mild and chemoselective method for a
rapid and clean preparation of isothiocyanates in high
yields and purity without the need for subsequent work-
up has been developed (Scheme 2).33 The reaction proceeds
within 15 min with aliphatic and activated aromatic
substrates; however, deactivated arylamines need longer
reaction times for the complete formation of the dithiocar-
bamate in order to prevent side reactions such as Boc-pro-
tection of the amine or thiourea formation. This method
constitutes an interesting alternative in the synthesis of iso-
thiocyanates (and thioureas) in complex synthetic
sequences where a minimum work-up of the intermediate
isothiocyanate should be carried out.
25. Hofmann, A. W. Chem. Ber. 1869, 2, 120.
26. Braun, J.; Deutsch, H. Ber. Dtsch. Chem. Ges. 1912, 45, 2188–2198.
27. Slotta, K. H.; Tschesche, R.; Dressler, H. Chem. Ber. 1930, 63, 208–
222.
28. Bolsen, C. E.; Hartshorn, E. B. J. Am. Chem. Soc. 1923, 45, 2349–
2355.
29. Mull, R. J. Am. Chem. Soc. 1955, 77, 581–583.
30. Analytical data for entry 19: Purified by filtering the crude through a
plug of silica using 1:1 CH2Cl2/hexane containing 2% Et3N. Pale
brown oil, yield: 80%, 1H NMR (400 MHz, CDCl3, filtered through
Al2O3 before use): 4.00–4.04 (m, 2H), 4.07–4.11 (m, 2H), 5.77 (s, 1H),
7.13 (d, 3J 7.5 Hz, 1H), 7.29 (t, 3J 7.5 Hz, 1H), 7.32–7.35 (m, 1H),
7.46–7.48 (m, 1H). 13C NMR (100 MHz, CDCl3): 65.4, 104.7, 125.1,
125.2, 126.1, 130.4, 132.1, 137.0, 138.9. HRMS (ESI+): [MH+]: calcd
for C10H10NO2S (m/z): 208.0432. Found: 208.0463.
Acknowledgement
U.B. thanks the Danish Research Council for Techno-
logy and Production Sciences (Grant Nos.: 23-04-0086
and 23-02-011) for financial support.
31. Analytical data for entry 20: 1H NMR (400 MHz, CDCl3): d 7.16 (m,
2H), 7.03–7.07 (m, 4H); 4.00 (s, 6H). 13C NMR (100 MHz, CDCl3): d
156.1; 140.3; 125.6; 120.4; 119.4; 110.1; 56.0. GCMS m/z 328. Anal.
Calcd for C16H12N2O2S2 (328.42): C, 58.52; H, 3.68; N, 8.53. Found:
C, 58.42; H, 3.82; N, 8.71.
References and notes
´
1. For examples, see: Fernandez, J. M. G.; Mellet, C. O.; Blanco, J. L. J.;
Mota, J. F.; Gadelle, A.; Coste Sarguet, A.; Defaye, J. Carbohydr.
Res. 1995, 268, 57–71.
2. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1–24.
3. Stephensen, H.; Zaragosa, F. J. Org. Chem. 1997, 62, 6096–6097.
4. Ratke, A. Chem. Ber. 1872, 5, 799.
32. The cyclisation was indicated by elemental analysis, and in the 1H
t
NMR by two separate Bu signals.
33. General procedure: Absolute ethanol (2–5 mL) was added to the amine
(4.40 mmol). CS2 (3.34 g, 44 mmol) and Et3N (444 mg, 4.40 mmol, in
the case of amine hydrochlorides an extra equivalent of triethylamine
was added) were added while stirring, resulting in the precipitation of
the dithiocarbamate. The reaction mixture was stirred for 5–30 min at
room temperature and then cooled on an ice bath. Boc2O (950 mg,
4.36 mmol), dissolved in absolute ethanol (1 mL), was added followed
by the immediate addition of a catalytic amount of DMAP or
DABCO (1–3 mol %) in absolute ethanol (1 mL). The reaction
mixture was kept in the ice bath for 5 min, and was then allowed to
reach room temperature. After evolution of gas from the reaction
mixture had ceased (approximately 10 min), the reaction mixture was
stirred for a further 5 min at rt and evaporated thoroughly in vacuo.
In the case of amine hydrochlorides, the residue was taken up in
diethyl ether and triethylammonium hydrochloride was filtered off,
and the filtrate was evaporated in vacuo to afford the desired
isothiocyanate in high purity.
5. Dyson, G. M.; George, H. J. J. Chem. Soc. 1924, 125, 1702–1708.
6. Larsen, C.; Stelliou, K.; Harpp, D. N. J. Org. Chem. 1978, 43, 337–
339.
7. Larsen, C.; Harpp, D. N. J. Org. Chem. 1981, 46, 2465–2466.
8. Kim, S.; Yi, K. Y. Tetrahedron Lett. 1985, 26, 1661–1664.
9. Boas, U.; Jakobsen, M. H. J. Chem. Soc., Chem. Commun. 1995,
1995–1996.
10. Boas, U.; Pedersen, B.; Christensen, J. B. Synth. Commun. 1998, 28,
1223–1228.
11. Boas, U.; Pedersen, H. G.; Christensen, J. B.; Heegaard, P. M. H.
Tetrahedron Lett. 2004, 45, 269–272.
12. Molina, P.; Alajarin, M.; Tamiaki, H. Synthesis 1982, 596–597.
13. Jochims, J. C.; Seeliger, A. Angew. Chem. 1967, 79, 151.
14. Basel, Y.; Hassner, A. J. Org. Chem. 2000, 65, 6368–6380.
15. Katrizky, J. J. Chem. Soc., Perkin Trans. 1 1979, 1953–1955.
16. Frentzel, J. Chem. Ber. 1883, 16, 743–746.