´
A. Huczynski et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2585–2589
2588
Nagatsu, A.; Mizukami, H.; Ogihara, Y.; Sakakibara, J.
Supplementary data
Chem. Pharm. Bull. 2001, 49, 711; (e) Tsukube, H.;
Sohmiya, H. J. Org. Chem 1991, 56, 875; (f) Maruyama,
K.; Sohmiya, H.; Tsukube, H. J. Chem. Soc., Chem.
Commun. 1989, 864; (g) Nagatsu, A.; Tabunoki, Y.;
Nagai, S.; Ueda, T.; Sakakibara, J.; Hidaka, H. Chem.
Pharm. Bull. 1997, 45, 966; (h) Nagatsu, A.; Sakakibara, J.
Yakugaku Zasshi. 1997, 117, 583.
Supplementary data associated with this article can be
´
9. (a) Huczynski, A.; Przybylski, P.; Brzezinski, B.; Bartl, F.
Biopolymers 2006, 81, 282; (b) Huczynski, A.; Przybylski,
References and notes
´
P.; Brzezinski, B.; Bartl, F. Biopolymers 2006, 82, 491; (c)
1. (a) Ferdani, R.; Gokel, G. W. Encyclopedia of Supramo-
lecular Chemistry: Ionophores; Marcel Dekker Inc., 2004,
pp. 760–766; (b) Westley, J. W. In Polyether Antibiotics.
Naturally Occurring Acid Ionophores; Marcel Dekker Inc.:
New York, 1982; vol. 1, pp. 1–20; (c) Pressman, B. C.
Antibiotics and Their Complexes; Marcel Dekker Inc.:
New York, 1985, pp. 1–18; (d) Westley, J. W. In Polyether
Antibiotics. Naturally Occurring Acid Ionophores; Marcel
Dekker Inc.: New York, 1983; vol. 2, pp. 51–86; (e)
Dutton, C. J.; Banks, B. J.; Cooper, C. B. Nat. Prod. Rep.
1995, 12, 165.
2. (a) Riddell, F. G. Chirality 2002, 14, 121; (b) Martinek, T.;
Riddell, F. G.; Wilson, C.; Weller, C. T. J. Chem. Soc.
Perkin Trans. 2 2000, 35; (c) Ben-Tal, N.; Sitko, D.;
Bransburg-Zabary, S.; Nachliel, E.; Gutman, M. Biochim.
Biophys. Acta 2000, 1466, 221; (d) Pinkerton, M.; Stein-
rauf, L. K. J. Mol. Biol. 1970, 49, 533; (e) Mollenhauer, H.
H.; Morre, D. J.; Rowes, R. D. Biochim. Biophys. Acta
1990, 1031, 225.
´
Huczynski, A.; Michalak, D.; Przybylski, P.; Brzezinski,
B.; Bartl, F. J. Mol. Struct. 2006, 797, 99; (d) Huczynski,
´
A.; Michalak, D.; Przybylski, P.; Brzezinski, B.; Bartl, F.
´
J. Mol. Struct. 2007, 828, 130; (e) Huczynski, A.; Łowicki,
´
Brzezinski, B. J. Mol. Struct. 2006, 788, 176; (g)
´
Huczynski, A.; Przybylski, P.; Schroeder, G.; Brzezinski,
B. J. Mol. Struct. 2007, 29, 111; (h) Huczynski, A.;
´
Przybylski, P.; Brzezinski, B. Tetrahedron 2007, 63, 8831.
10. (a) Rao, S.; Venkateswerlu, G. Curr. Microbiol. 1989, 19,
253; (b) Dashper, S. G.; O’Brien-Simpson, N. M.; Cross,
K.; Paolini, R. A.; Hoffman, B.; Catmull, D.; Malkoski,
M.; Reynolds, E. C. Antimicrob. Agents Chemother. 2005,
49, 2322.
11. Pankiewicz, R.; Remlein-Starosta, D.; Schroeder, G.;
Brzezinski, B. J. Mol. Struct. 2006, 783, 136.
´
12. Huczynski, A.; Przybylski, P.; Brzezinski, B.; Bartl, F.
J. Phys. Chem. B 2006, 110, 15615.
3. (a) Pressman, B. C. Annu. Rev. Biochem. 1976, 45, 501; (b)
Shumard, R. F.; Callender, M. E. Antimicrobial Agents
Chemother. 1967, 7, 369.
13. Synthesis of Monensin A (1): Monensin A sodium salt
(Fluka) was dissolved in dichloromethane and stirred
vigorously with a layer of aqueous sulphuric acid (pH 1.5).
The organic layer containing MONA was washed with
distilled water, and dichloromethane was evaporated
under reduced pressure to dryness.
4. Nebbia, C.; Ceppa, L.; Dacasto, M.; Nachtmann, C.;
Carletti, M. J. Vet. Pharmacol. Ther. 2001, 24, 399.
5. Fahim, M.; Pressman, B. C. Life Sci. 1981, 29, 1959.
6. (a) Jenkins, T. C.; Fellner, V.; Mcuffey, R. K. J. Dairy Sci.
2003, 86, 324; (b) Yamazaki, Y.; Sejima, H.; Yuguchi, M.;
Shinozuka, K.; Isokawa, K. J. Oral Sci. 2007, 49, 107; (c)
Clark, M. R.; Mohandas, N.; Shohet, S. B. J. Clin. Invest.
1982, 70, 1074; (d) Ramanzin, M.; Bailoni, L.; Schiavon,
S.; Bittante, G. J. Dairy Sci. 1997, 80, 1136; (e) Bergen, W.
G.; Bates, D. B. J. Anim. Sci. 1984, 58, 1465; (f) Cardona,
C. J.; Galey, F. D.; Bickford, A. A.; Charlton, B. R.;
Cooper, G. L. Avian. Dis. 1993, 37, 107; (g) Johnson, D.
C.; Spear, P. G. J. Virol. 1982, 43, 1102; (h) Schlegel, R.;
Willingham, M.; Pastan, I. Biochem. Biophys. Res. Com-
mun. 1981, 102, 992; (i) Marsh, M.; Wellsteed, J.; Kern,
H.; Harms, E.; Helenius, A. Proc. Natl. Acad. Sci. U.S.A.
1982, 79, 5297; (j) Iacoangeli, A.; Melucci-Vigo, G.;
Risuleo, G. Biochimie 2000, 82, 35; (k) Tanabe, K. Blood
14. (a) General procedure for the synthesis of Monensin A
esters (2–10): (method a, Scheme 1): To a mixture of (1)
(500 mg, 0.75 mmol) in dichloromethane (15 ml) the
following compounds were added: DCC (206 mg,
1.0 mmol), EtOH (5 mmol). The mixture was first stirred
at a temperature below 0 °C for 24 h and then for further
24 h at room temperature. Subsequently, the solvent was
evaporated under reduced pressure to dryness. The residue
was then suspended in hexane and filtered off. The filtrate
was evaporated under reduced pressure and the residue
purified chromatographically on silica gel (Fluka type 60)
to give (2) (20% yield) as a colourless oil showing a
tendency to form the glass state; (b) (method b, Scheme 1):
To a mixture of MONA (500 mg, 0.75 mmol) in dichlo-
romethane (15 ml) the following compounds were added:
DCC (206 mg, 1.0 mmol), PPy (50 mg, 0.33 mmol), cor-
responding alcohol (5.0 mmol). The mixture was first
stirred at a temperature below 0 °C for 24 h and then for
further 24 h at room temperature. After this time the
solvent was evaporated under reduced pressure to dryness.
The residue was suspended in hexane and filtered off. The
filtrate was evaporated under reduced pressure and the
residue was purified chromatographically on silica gel
(Fluka type 60) to give corresponding esters (2–3, 7–8)
(yield from 15% to 71%) as a colourless oil showing a
tendency to form the glass state; (c) (method c, Scheme 1):
To a mixture of MONA (500 mg, 0.75 mmol) in dichlo-
romethane (15 ml) the following compounds were added:
DCC (206 mg, 1.0 mmol), PPy (50 mg, 0.33 mmol), cor-
responding alcohol (5 mmol) and p-TSA (28.5 mg,
0.15 mmol). The mixture was first stirred at a temperature
below 0 °C for 24 h and then for further 24 h at room
temperature. The solvent was subsequently evaporated
´
Cells 1990, 16, 437; (l) Adovelande, J.; Schrevel, J. Life
Sci. 1996, 59, 309 .
´
7. (a) Huczynski, A.; Ratajczak-Sitarz, M.; Katrusiak, A.;
Brzezinski, B. J. Mol. Struct. 2007, 871, 92; (b) Huczynski,
´
A.; Ratajczak-Sitarz, M.; Katrusiak, A.; Brzezinski, B.
Hamadinia, S. A.; Shimelis, O. G.; Tan, B.; Erdahl, W.
L.; Chapman, C. J.; Renkes, G. D.; Taylor, R. W.;
Pfeiffer, D. R. J. Biol. Chem. 2002, 277, 38113; (d)
Hamadinia, S. A.; Tan, B.; Erdahl, W. L.; Chapman, C. J.;
Taylor, R. W.; Pfeiffer, D. R. Biochemistry 2004, 43,
15956.
8. (a) Nagatsu, A.; Tanaka, R.; Hashimoto, M.; Mizukami,
H.; Ogihara, Y.; Sakakibara, J. Tetrahedron Lett. 2000,
41, 2629; (b) Tanaka, R.; Nagatsu, A.; Mizukami, H.;
Ogihara, Y.; Sakakibara, J. Tetrahedron 2001, 57, 3005; (c)
Nagatsu, A.; Takahashi, T.; Isomura, M.; Nagai, S.;
Ueda, T.; Murakami, N.; Sakakibara, J.; Hatano, K.
Chem. Pharm. Bull. 1994, 42, 2269; (d) Tanaka, R.;