Ma et al.
followed by the amide hydrolysis catalyzed by the amidase, have
become effective and environmentally benign methods for the
production of carboxylic acids and their amide derivatives. One
of the well-known examples is the industrial production of
acrylamide from biocatalytic hydration of acrylonitrile.5 Recent
studies have demonstrated that biotransformations of nitriles
complement the existing asymmetric chemical and enzymatic
methods for the synthesis of chiral carboxylic acids and their
derivatives.6 One of the distinct features of enzymatic trans-
formations of nitriles is the straightforward generation of
enantiopure amides, valuable organonitrogen compounds in
synthetic chemistry, in addition to the formation of enantiopure
carboxylic acids. For example, we6c have shown that Rhodo-
coccus erythropolis AJ270,7 a nitrile hydratase/amidase-contain-
ing whole cell catalyst, is able to efficiently and enantioselec-
tively transform a variety of racemic nitriles into highly
enantiopure carboxylic acids and amides. Using the nitrile
biotransformation approach, many structurally diverse R-amino
acids and amides of high enantiomeric purity have been
synthesized.8
It is generally believed that the movement of a stereocenter
from the reactive site (R-position to functional group) to a
remote place gives rise to the decrease of enantioselectivity in
asymmetric reactions. However, this notion may not be true
for enzymatic reactions since the chiral recognition site of an
enzyme might be located in some distance to the catalytic center.
In other words, the chiral recognition between the enzyme and
a substrate might occur at a remote pocket from the reaction
site. If this hypothesis works, it could lead to highly enanti-
oselective biocatalytic reactions of the substrates that bear a
remotely positioned chiral center. To test this hypothetic remote
chiral recognition mechanism, and also to explore the application
of nitrile biotransformations in the synthesis of enantiopure
valuable ꢀ-hydroxy and ꢀ-amino acids and their amide deriva-
tives, we undertook the current study.15 We have revealed that
the biotransformations of nitriles that contain a ꢀ-stereocenter
can take place enantioselectively to afford the corresponding
amide and acid products with excellent enantiomeric purity,
provided the substrates are carefully engineered. Herein, we
report a very simple, general, but powerful substrate engineering
strategy to increase the enantioselectivity. Introduction of an
O- and N-benzyl group into the ꢀ-hydroxy and ꢀ-amino nitrile
and amide substrates, respectively, has been shown to enhance
dramatically the enantioselectivity of the amidase and therefore
to lead efficient biotransformations of nitriles to afford highly
enantioenriched ꢀ-hydroxy and ꢀ-amino acid and amide
derivatives.
In contrast to the successful enantioselective nitrile biotrans-
formations for the preparation of chiral carboxylic acids and
amide derivatives that bear an R-stereocenter,6c,9,10 biotrans-
formations of substrates having a chiral center remote from the
cyano or the amido functional group have been reported to
proceed with, in most cases, disappointingly low enantioselec-
tivity and chemical yield11–13 except for some biocatalytic
desymmtrization reactions of 3-substituted glutaronitrile deriva-
tives.14 Biotransformations of the Baylis-Hillman nitriles and
their one-carbon homologated nitriles, for example, gave only
moderate enantioselectivity,12 whereas ꢀ-phenylbutyronitrile11a
or ꢀ-, γ-, or δ-hydroxylated alkanenitriles yielded no or
extremely low enantiocontrol.11d
Results and Discussion
Biotransformations of Racemic ꢀ-Hydroxy- and ꢀ-Ben-
zyloxyalkanenitriles. We initially investigated the biotransfor-
mations of racemic 3-hydroxy alkanenitriles 1, expecting the
(10) (a) Wang, M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-Cohn, O.; Colby,
J. Tetrahedron: Asymmetry 2000, 11, 1123. (b) Wang, M.-X.; Li, J.-J.; Ji, G.-J.;
Li, J.-S. J. Mol. Catal. B: Enzym. 2001, 14, 77. (c) Wang, M.-X.; Zhao, S.-M.
Tetrahedron Lett. 2002, 43, 6617. (d) Wang, M.-X.; Zhao, S.-M. Tetrahedron:
Asymmetry 2002, 13, 1695. (e) Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett.
2000, 41, 6501. (f) Wang, M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (g)
Wang, M.-X.; Feng, G.-Q. J. Org. Chem. 2003, 68, 621–624. (h) Wang, M.-X.;
Feng, G.-Q. J. Mol. Catal. B: Enzym. 2002, 18, 267. (i) Wang, M.-X.; Feng,
G.-Q.; Zheng, Q.-Y. AdV. Synth. Catal. 2003, 345, 695. (j) Wang, M.-X.; Feng,
G.-Q.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2004, 15, 347. (k) Wang, M-X.;
Lin, S.-J.; Liu, C.-S.; Zheng, Q.-Y.; Li, J.-S. J. Org. Chem. 2003, 68, 4570. (l)
Wang, M.-X.; Deng, G.; Wang, D.-X.; Zheng, Q.-Y. J. Org. Chem. 2005, 70,
2439. (m) Wang, J.-Y.; Wang, D.-X.; Zheng, Q.-Y.; Huang, Z.-T.; Wang, M.-
X. J. Org. Chem. 2007, 72, 2040. (n) Wang, J.-Y.; Wang, D.-X.; Pan, J.; Huang,
Z.-T.; Wang, M.-X. J. Org. Chem. 2007, 72, 9391. (o) Gao, M.; Wang, D.-X.;
Zheng, Q.-Y.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2007, 72, 6060.
(11) (a) Gradley, M. L.; Knowles, C. J. Biotechnol. Lett. 1994, 16, 41. (b)
Klempier, N.; de Raat, A.; Faber, K.; Griengl, H. Tetrahedron Lett. 1991, 32,
341. (c) Yokoyama, M.; Imai, N.; Sugai, T,.; Ohta, H. J. Mol. Catal. B: Enzym.
1996, 1, 135. (d) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R. J.
Org. Chem. 1996, 61, 9084. (e) Wu, Z.-L.; Li, Z.-Y. J. Mol. Catal. B: Enzym.
2003, 22, 105.
(3) For leading references, see: (a) Genet, J.-P. Acc. Chem. Res. 2003, 36,
908. (b) Hagemann, B.; Junge, K.; Enthaler, S.; Michalik, M.; Riermeier, T.;
Monsees, A.; Beller, M. AdV. Synth. Catal. 2005, 347, 1978. (c) Touati, R.;
Gmiza, T.; Jeulin, S.; Deport, C.; Ratovelomanana-Vidal, V.; Hassine, B. B.;
Genet, J.-P. Synlett 2005, 2478. (d) Wang, Z.; Zhao, C.; Pierce, M. E.; Fortunak,
J. M. Tetrahedron: Asymmetry 1999, 10, 225. (e) Nelson, S. G. Tetrahedron:
Asymmetry 1998, 9, 357. (f) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate,
M. D. J. Am. Chem. Soc. 2005, 127, 3774. (g) Denmark, S. E.; Fan, Y.; Eastgate,
M. D. J. Org. Chem. 2005, 70, 5235. (h) Yamashita, Y.; Ishitani, H.; Shimizu,
H.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292. (i) Ocampo, R.; Dolbier,
W. R. Tetrahedron 2004, 60, 9325. (j) Ribeiro, C. M. R.; Farias, F. M. C. Mini-
ReV. Org. Chem. 2006, 3, 1.
(4) For overviews, see: (a) Kobayashi, M.; Shimizu, S. FEMS Microbiol.
Lett. 1994, 120, 217. (b) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 1099. (c) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 3197. and references therein.
(5) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol. Biotechnol.
1993, 40, 189.
(6) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta, H.
Biosci. Biotechnol. Biochem. 1997, 61, 1419. (b) Martinkova, L.; Kren, V. Biocat.
Biotrans. 2002, 20, 73. (c) Wang, M.-X. Top. Catal. 2005, 35, 117.
(7) (a) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS Microbiol.
Lett. 1995, 129, 57. (b) Colby, J.; Snell, D.; Black, G. W. Monatsh. Chem. 2000,
131, 655. (c) O’Mahony, R.; Doran, J.; Coffey, L.; Cahill, O. J.; Black, G. W.;
O’Reilly, C. Antonie Van Leeuwenhoek 2005, 87, 221.
(12) (a) Wang, M.-X.; Wu, Y. Org. Biomol. Chem. 2003, 1, 535. (b) Zhao,
S.-M.; Wang, M.-X. Chin. J. Chem. 2002, 20, 1291.
(13) The presence of a ꢀ-vinyl group of the substrate was found to increase
the enantioselectivity of biotransformations: Gao, M.; Wang, D.-X.; Zheng, Q.-
Y.; Wang, M.-X. J. Org. Chem. 2006, 71, 9532.
(8) (a) Wang, M.-X.; Lin, S.-J. Tetrahedron Lett. 2001, 42, 6925. (b) Wang,
M.-X.; Lin, S.-J. J. Org. Chem. 2002, 67, 6542. (c) Wang, M.-X.; Lin, S.-J.;
Liu, J.; Zheng, Q.-Y. AdV. Synth. Catal. 2004, 346, 439. (d) Wang, M.-X.; Liu,
J.; Wang, D.-X.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2005, 16, 2409.
(9) (a) DeSantis, G.; Zhu, Z.; Greenberg, W. A.; Wong, K.; Chaplin, J.;
Hanson, S. R.; Farwell, B.; Nicholson, L. W.; Rand, C. L.; Weiner, D. P.;
Robertson, D. E.; Burk, M. J. J. Am. Chem. Soc. 2002, 124, 9024. (b) Effenberger,
F.; Oꢀwald, S. Tetrahedron: Asymmetry 2001, 12, 279. (c) Hann, E. C.; Sigmund,
A. E.; Fager, S. K.; Cooling, F. B.; Gavagan, J. E.; Ben-Bassat, A.; Chauhan,
S.; Payne, M. S.; Hennessey, S. M.; DiCosimo, R. AdV. Synth. Catal. 2003,
345, 775. (d) Preiml, M.; Hillmayer, K.; Klempier, N. Tetrahedron Lett. 2003,
44, 5057. (e) Yokoyama, M.; Kashiwagi, M.; Iwasaki, M.; Fushuku, K.; Ohta,
H.; Sugai, T. Tetrahedron: Asymmetry 2004, 15, 2817.
(14) (a) Kakeya, H.; Sakai, N.; Sano, A.; Yokoyama, M.; Sugai, T.; Ohta,
H. Chem. Lett. 1991, 1823. (b) Crosby, J. A.; Parratt, J. S.; Turner, N. J.
Tetrahedron: Asymmetry 1992, 3, 1547. (c) Maddrell, S. J.; Turner, N. J.;
Kerridge, A.; Willetts, A. J.; Crosby, J. Tetrahedron Lett. 1996, 37, 6001. (d)
Vink, M. K.; Schortinghuis, C. A.; Luten, J.; van Maarseveen, J. H.; Schoemaker,
H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Org. Chem. 2002, 67, 7869.
(15) Part of the work of the biotransformations of ꢀ-hydoxy nitriles has
appeared as a preliminary communication: Ma, D.-Y.; Zheng, Q.-Y.; Wang, D.-
X.; Wang, M.-X. Org. Lett. 2006, 8, 3231.
(16) (a) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem.
Soc. 1982, 104, 7294. (b) Program “Selectivity” by: Faber, K.; Hoenig, H. http://
4088 J. Org. Chem. Vol. 73, No. 11, 2008