C O M M U N I C A T I O N S
dependent, but not in chloroform. These results further supported
π stacking of the oligomers.
In summary, we have shown that nonamphiphilic foldamers self-
assembled to form monolayered vesicles in methanol owing to
cooperative π stacking, hydrogen bonding, and van der Waals
interactions. The fact that 1 and 2b gelated nonpolar hydrocarbons
illustrates that the self-assembly of foldamers can be modulated
through appending additional groups. It is expected that both the
folded segments and peripheral chains can be readily modified.
Thus, the work may open the way for the design of a new generation
of vesicles from nonamphiphilic architectures.
Figure 3. TEM images of the vesicles of 2a (formed in 0.25 mM solution
in methanol) on copper grid covered with Formvar film at different
magnifications.
Acknowledgment. We thank the NBRP (2007CB808000), CAS
(KJCX2-YW-H13), and NSFC (Nos. 20732007, 20621062,
20425208, 20572126, 20672137) for financial support.
Supporting Information Available: Experimental details, spectra
and microscopy images. This material is available free of charge via
References
(1) (a) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967–973. (b) Mueller,
A.; O’Brien, D. F. Chem. ReV. 2002, 102, 727–758. (c) Blumenthal, R.;
Clague, M. J.; Durell, S. R.; Epand, R. M. Chem. ReV. 2003, 103, 53–70.
(d) Allen, T. M.; Cullis, P. R. Science 2004, 303, 1818–1822.
(2) (a) Hillmyer, M. A. Science 2007, 317, 604–605. (b) Morishima, Y. Angew.
Chem., Int. Ed. 2007, 46, 1370–1372. (c) Hamley, I. W.; Castelletto, V.
Angew. Chem., Int. Ed. 2007, 46, 4442–4455.
(3) (a) Zhou, Y.; Yan, D. Angew. Chem., Int. Ed. 2004, 43, 4896–4899. (b)
Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.; Minch,
B.; Wegner, G. J. Am. Chem. Soc. 2005, 127, 15107–15111. (c) Kim, K. T.;
Winnik, M. A.; Manners, I. Soft Matter 2006, 2, 957–965.
(4) (a) Tanaka, Y.; Mayachi, M.; Kobuke, Y. Angew. Chem., Int. Ed. 1999,
38, 504–506. (b) Lee, M.; Lee, S.-J.; Jiang, L.-H. J. Am. Chem. Soc. 2004,
126, 12724–12725.
(5) Jeon, Y. J.; Bharadwaj, P. K.; Choi, S. W.; Lee, J. W.; Kim, K. Angew.
Chem., Int. Ed. 2002, 41, 4474–4476.
(6) Zhou, S.; Burger, C.; Chu, B.; Sawamura, M.; Nagahama, N.; Toganoh,
M.; Hackler, U. E.; Isobe, H.; Nakamura, E. Science 2001, 291, 1944–
1947.
(7) (a) Ravoo, B. J.; Darcy, R. Angew. Chem., Int. Ed. 2000, 39, 4324–4326.
(b) Lim, C. W.; Crespo-Biel, O.; Stuart, M. C. A.; Reinhoudt, D. N.;
Huskens, J.; Ravoo, B. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6986–
6991.
(8) Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew. Chem., Int. Ed. 2006, 45,
7526–7530.
(9) (a) Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Schenning,
A. P. H. J.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.;
Guerzo, A. D.; Desvergne, J.-P.; Maan, J. C. J. Am. Chem. Soc. 2005,
127, 1112–1113. (b) Hoeben, F. J. M.; Shklyarevskiy, I. O.; Pouderoijen,
M. J.; Engelkamp, H.; Schenning, A. P. H. J.; Christianen, P. C. M.; Maan,
J. C.; Meijer, E. W. Angew. Chem., Int. Ed. 2006, 45, 1232–1236.
(10) (a) Ajayaghosh, A.; Varghese, R.; Praveen, V. K.; Mahesh, S. Angew.
Chem., Int. Ed. 2006, 45, 3261–3264. (b) Ajayaghosh, A.; Chithra, P.;
Varghese, R. Angew. Chem., Int. Ed. 2007, 46, 230–233.
(11) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180. (b) Hill, D. J.;
Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A. Chem. ReV. 2001,
101, 3893–4012. (c) Gong, B. Chem.—Eur. J. 2001, 7, 4337–4342. (d)
Huc, I. Eur. J. Org. Chem. 2004, 17–29. (e) Li, Z.-T.; Hou, J.-L.; Li, C.;
Yi, H.-P. Chem. Asian J. 2006, 1, 766–778. (f) Li, Z.-T.; Hou, J.-L.; Li, C.
Acc. Chem. Res. 2008, DOI: 10.1021/ar700219m.
(12) Aggregation of ꢀ-peptide foldamers that do not possess an amphiphilic
structure has been reported. See: (a) Pomerantz, W. C.; Abbott, N. L.;
Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 8730–8731. (b) Pomerantz,
W. C.; Yuwono, V. M.; Pizzey, C. L.; Hartgerink, J. D.; Abbott, N. L.;
Gellman, S. H. Angew. Chem., Int. Ed. 2008, 47, 1241–1244.
(13) (a) Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li,
Z.-T. J. Am. Chem. Soc. 2004, 126, 12386–12394. (b) Li, C.; Wang, G.-
T.; Yi, H.-P.; Jiang, X.-K.; Li, Z.-T.; Wang, R.-X. Org. Lett. 2007, 9, 1797–
1800.
(14) (a) Cuccia, L. A.; Ruiz, E.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M.
Chem.—Eur. J. 2002, 8, 3448–3457. (b) Li, C.; Zhu, Y.-Y.; Yi, H.-P.; Li,
C.-Z.; Jiang, X.-K.; Li, Z.-T.; Yu, Y.-H. Chem.—Eur. J. 2007, 13, 9990–
9998.
Figure 4. Tentative model for the self-assembly of vesicles and organogels
from nonamphiphilic foldamers.
1.8 nm, whereas the peripheral chains at their extended state had a
length of 1.6 nm. Thus, these results showed that the vesicles had
a monolayer morphology and were generated by two-dimensional
packing of cylindrical aggregates of the folded frameworks (Figure
4). The more polar aryl amide groups might be exposed to methanol,
while the appended alkyl chains might be repelled by solvophobic
effects to entangle each other along the cylinders. It has been
reported that six-membered N-H· · ·O H-bonding survives in
aromatic amides in competitive media.15 The NH signal of model
molecule N,N′-di(2-methoxybenzoyl)hydrazine and its 4-substituted
1
isomer in H NMR in DMSO-d6 (4 mM) appeared at 10.75 and
10.20 ppm,13a respectively. This large difference suggested that
similar H-bonding also formed in hydrazide derivatives, which could
induce the formation of folded conformations for 1 and 2 in polar
solvents. Similar one-layered structures have been revealed for
several linear amphiphilic conjugated systems.9
Interestingly, compounds 1 and 2b were also found to gelate
nonpolar aliphatic hydrocarbons including n-hexane, cyclohexane,
n-heptane, n-octane, and n-decane. The solubility of 2a was low
in these liquids possibly due to stronger intermolecular H-bonding
of its appended amides. However, both SEM and AFM studies
showed that all three molecules formed entangled fibers when cast
from these liquids. In contrast, only small particles and/or short
fibers were formed when cast from chloroform. In nonpolar liquids,
π stacking should exist for all these molecules. IR spectra of 1,
2b, and several intermediates in n-hexane exhibited NH stretching
vibrations only at <3390 cm-1, indicating that NH units in their
side chains also formed intermolecular H-bonding. However, the
peripheral aliphatic chains would be flexible. Therefore, we pro-
posed that it was these flexible chains that entwined with each other,
leading to the formation of three-dimensional networks which
immobilized the liquid (Figure 4). Compared to those recorded in
good solvent chloroform, UV spectra of the oligomers in both
methanol and alkanes also exhibited hypochromicity, which in-
creased with temperature decrease. In addition, chiral 2b displayed
circular dichroism in methanol or alkanes, which was temperature-
(15) (a) Parra, R. D.; Zeng, H.; Zhu, J.; Zheng, C.; Zeng, X. C.; Gong, B.
Chem.—Eur. J. 2001, 7, 4352–4357. (b) Yi, H.-P.; Wu, J.; Ding, K.-L.;
Jiang, X.-K.; Li, Z.-T. J. Org. Chem. 2007, 72, 870–877.
JA801618P
9
J. AM. CHEM. SOC. VOL. 130, NO. 22, 2008 6937