dines13 have been successfully employed as substrates.
Although the synthetic utility of allylallenes is very useful
in thermal aromatization,14 radical cyclization,15 gold-
Scheme 1
.
Reactions of Allylindiums with 3°-Propargyl
Alcohols
mediated
cyclization,16
and
preparation
of
bicyclo[3.1.0]hexanone,17 (E)-vinyl azides, and polysubsti-
tuted pyrroles,18 synthesis of tri- and tetra-substituted ally-
lallenes is tedious. In addition, as far as we are aware, there
is no report that propargyl alcohol itself instead of propargyl
alcohol derivatives has been used as an electrophile in SN2′
nucleophilic substitution reactions. It is presumably due to
the basicity of a variety of organometallic reagents which
act as nucleophiles. Therefore, there is still a strong need
for a highly efficient synthesis of multisubstituted allenes
despite the recent progress of allene synthesis.19 Recently,
allylindiums and propargylindiums generated in situ from
the reactions of indium with allyl halides and propargyl
halides could participate as nucleophiles in Pd-catalyzed
substitution reactions of allyl carbonates to produce 1,5-
dienes and 1,5-enynes in good yields.20 In continuation of
our studies directed toward the development of efficient
indium-mediated reactions, we describe herein an efficient
synthetic method of multisubstituted allenes containing allyl
groups from the reactions of allylindiums with 3°-propargyl
alcohols (Scheme 1).
1). The use of indium (1.5 equiv) with allyl bromide (1.5
equiv) afforded the desired product in 50% yield (entry 2).
Of the reactions screened, the best results were obtained with
Table 1. Reaction Optimization of Allylindium with
3°-Propargyl Alcohola
temp time yield
entry
X
Met additive
solvent
THF
THF
THF
THF
THF
THF
THF
THF
DMF
H2O
Wet-THF
THF
THF-H2O
THF-NH4Cl 70
THF
THF
(°C)
(h)
(%)b
1c
2d
3e
4c
5c
6f
7
8
9
10
11
12
13
14
15
16
Br In
Br In
Br In
Br In
Br In
Br In
Br In
70
70
70
70
70
35
35
35
100
100
70
70
70
3
7
7
20
20
3
4
3
20
20
20
20
20
20
5
51
50
40
0
10
88
87
87
0
0
9
0
0
Our initial study focused on reaction of 2-phenyl-3-butyn-
2-ol (1a) with allylindium generated in situ from indium and
allyl halides. The results are summarized in Table 1.
Allylindium obtained from indium (1.0 equiv) and allyl
bromide (1.5 equiv) gave allylallene 2a in 51% yield (entry
LiI
LI
I
In
(8) (a) Darcel, C.; Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1994,
1845. (b) Dixneuf, P. H.; Guyot, T.; Ness, M. D.; Robert, S. M. Chem.
Commun. 1997, 2083. (c) Ishikura, M.; Matsuzaki, Y.; Agata, I.; Katagiri,
N. Tetrahedron 1998, 54, 13929.
Br In
Br In
Br In
Cl In
Br In
Br In
Br Zn
Br Mg
(9) (a) Agami, C.; Couty, F.; Evano, G.; Mathieu, H. Tetrahedron 2000,
56, 367. (b) Ohno, H.; Anzai, M.; Toda, A.; Ohishi, S.; Fujii, N.; Tanaka,
T.; Takemoto, Y.; Ibuka, T. J. Org. Chem. 2001, 66, 4904.
(10) A1exakis, A.; Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem.
Soc. 1990, 112, 8042.
0
0
0
70
70
5
(11) (a) Pasto, D. J.; Hennion, G. F.; Shults, R. H.; Waterhouse, A.;
Chou, S.-K. J. Org. Chem. 1976, 41, 3496. (b) Jeffery-Luong, T.;
Linstrumelle, G. Tetrahedron Lett. 1980, 21, 5019. (c) Yus, M.; Gomis, J.
Eur. J. Org. Chem. 2003, 2043.
a Reactions were carried out with 1a (1 equiv), indium (1.5 equiv) and
allyl halide (2.25 equiv) unless otherwise noted. b Isolated yield. c 1a:In:allyl
halide ) 1:1:1.5. d 1a:In:allyl halide ) 1:1.5:1.5. e 1a:In:allyl halide )
1:1.5:1. f 1a:In:allyl halide ) 1:2:3.
(12) (a) A1exakis, A. Pure Appl. Chem. 1992, 64, 387. (b) Marshall,
J. A.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180. (c) Spino, C.; Frechette,
S. Tetrahedron Lett. 2000, 41, 8033.
(13) (a) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Fujii, N.; Ibuka, T.
Tetrahedron Lett. 1999, 40, 349. (b) Ohno, H.; Toda, A.; Fujii, N.;
Takemoto, Y.; Tanaka, T.; Ibuka, T. Tetrahedron 2000, 56, 2811.
(14) Huntsman, W. D.; Chen, J. P.; Yelekci, K.; Yin, T.-K.; Zhang,
L. J. J. Org. Chem. 1988, 53, 4357.
allylindium generated in situ from the reaction of indium
(1.5 equiv) with allyl bromide (2.25 equiv) in THF at 35 °C
for 4 h under a nitrogen atmosphere, producing allylallene
2a in 87% yield with complete regioselectivity (entry 7).
There is no propargylic substitution product (3) through SN-
reaction nor carboindation products (4 and 5) through
addition of allylindium to triple bond formed in this reaction
(see Figure 1). The present method worked equally well with
allyl iodide (entry 8). However, 1-phenyl-2-propyn-1-ol,
which is a 2°-propargyl alcohol, did not react with allylin-
dium reagent. Also, when 1a was used, 2-phenyl-1-buten-
3-yne was not obtained. These results indicate that the present
reactions proceeded through an SN1 like mechanism. The use
of indium in less than 1.5 equiv and allyl bromide in less
than 2.25 equiv resulted in sluggish reactions and gave lower
yields (entries 1-3). The use of indium (2.0 equiv) and allyl
(15) El Gueddari, F.; Grimaldi, J. R.; Hatem, J. M. Tetrahedron Lett.
1995, 36, 6685.
(16) Lemiere, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A.;
Fensterbank, L.; Malacria, M. Org. Lett. 2007, 9, 2207.
(17) Grimaldi, J.; Malacria, M.; Bertrand, M. Tetrahedron Lett. 1974,
275.
(18) Huang, X.; Shen, R.; Zhang, T. J. Org. Chem. 2007, 72, 1534.
(19) (a) Russel, C. E.; Hegedus, L. S. J. Am. Chem. Soc. 1983, 105,
943. (b) Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302. (c) Tsuji, J.;
Sugiura, T.; Minami, I. Synthesis 1987, 603. (d) Mandai, T.; Kunitomi, H.;
Higashi, K.; Kawada, M.; Tsuji, J. Synlett 1991, 697. (e) Bouyssi, D.; Gore,
J.; Balme, G.; Louis, D.; Wallach, J. Tetrahedron Lett. 1993, 34, 3129. (f)
Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789. (g) Badone, D.;
Cardamone, R.; Guzzi, U. Tetrahedron Lett. 1994, 35, 5477. (h) Ma, S.;
Zhang, A. J. Org. Chem. 1998, 63, 9601. (i) Ma, S.; Zhang, A.; Yu, Y.;
Xia, W. J. Org. Chem. 2000, 65, 2287.
(20) (a) Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146.
(b) Lee, P. H.; Shim, E.; Lee, K.; Seomoon, D.; Kim, S. Bull. Korean Chem.
Soc. 2005, 26, 157.
2442
Org. Lett., Vol. 10, No. 12, 2008