5886
T. L. Huang et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5884–5886
(IC50 = 0.442
whereas, compounds 2 (IC50 = 0.003
l
M) was equivalent to pentamidine (IC50 = 0.50
l
l
M),
M)
References and notes
lM) and 4 (IC50 = 0.002
1. Cushion, M. T.; Walzer, P. D.; Ashbaugh, A.; Rebholz, S.; Brubaker, R.; Vanden
Eynde, J. J.; Mayence, A.; Huang, T. L. Antimicrob. Agents Chemother. 2006, 50,
2337.
2. Mitsuyama, J.; Nomura, N.; Hashimoto, K.; Yamada, E.; Nishikawa, H.;
Kaeriyama, M.; Kimura, A.; Todo, Y.; Narita, H. Antimicrob. Agents Chemother.
2008, 52, 1318.
3. Huang, T. L.; Bacchi, C. J.; Kode, N. R.; Zhang, Q.; Wang, G.; Yartlet, N.; Rattendi,
D.; Londono, I.; Mazumder, L.; Vanden Eynde, J. J.; Mayence, A.; Donkor, I. O. Int.
J. Antimicrob. Agents 2007, 30, 555.
4. Bakunova, S. M.; Bakunov, S. A.; Patrick, D. A.; Suresh Kumar, E. V. K.; Ohemeng,
K. A.; Bridges, A. S.; Wenzler, T.; Barszcz, T.; Jones, S. G.; Werbovetz, K. A.; Brun,
R.; Tidwell, R. R. J. Med. Chem. 2009, 52, 2016.
were 167–250-fold more potent than pentamidine. The remaining
compounds were significantly less active than pentamidine. The
bioactivity against T. brucei or P. carinii was reduced by at least
10-fold or greater if the bisamidine groups in 4 were moved from
the para to the meta positions as in 6 or replaced with amides as
in 5.
In addition to high potency against T. brucei or P. carinii, several
bisbenzamidines exhibited very low cytotoxicity against the A549
cell line, namely, 2, 4, 8, 9, 10, and 12. The selectivity index of these
compounds for T. brucei (SIT.b) or P. carinii (SIP.c) can be defined as
the ratio of the cytotoxic IC50 to the T. brucei or P. carinii IC50 values.
Using this definition, the most selective compounds in this group
5. Phillips, G.; Guilford, W. J.; Buckman, B. O.; Davey, D. D.; Eagen, K. A.;
Koovakkat; S; Liang, A.; McCarrick, M.; Mohan, R.; Ng, H. P.; Pinkerton, M.;
Subramanyam; B; Ho, E.; Trinh, L.; Whitlow, M.; Wu; S; Xu, W.; Morrissey, M.
M. J. Med. Chem. 2002, 45, 2484.
against P. carinii were compounds
2
(SIP.c = 758,667) and
4
6. Vanden Eynde, J. J.; Mayence, A.; Johnson, M. T.; Huang, T. L.; Collins, M. S.;
Rebholz, S.; Walzer, P. D.; Cushion, M. T.; Donkor, I. O. Med. Chem. Res. 2005, 14,
143.
7. De Clercq, E.; Dann, O. J. Med. Chem. 1980, 23, 787.
8. Soeiro, M. N. C.; De Souza, E. M.; Stephens, C. E.; Boykin, D. W. Exp. Opin. Invest.
Drugs 2005, 14, 957.
(SIP.c = 596,500), respectively. The selectivity of compounds 2, 4,
8, 9, 10, and 12 for T. brucei ranged from 18,917 to 596,500. The
selectivity indexes of pentamidine for P. carinii and T. brucei were
48 and 12,000, respectively. This indicates that several of the com-
pounds in this series are highly selective for the pathogenic cells (P.
carinii and T. brucei) than for the mammalian cells, and their selec-
tivity profiles are superior to that of pentamidine. Because of their
high potency against P. carinii and low cytotoxicity, compounds 2
and 4 were further evaluated in an immunosuppressed mouse
model of Pneumocystosis.1 When evaluated at different doses (5,
10, 20, and 40 mg/kg), compound 2 emerged as the most promising
anti-Pneumocystis drug. This compound was highly efficacious
against the infection at 20 mg/kg and 40 mg/kg doses, with
>1000-fold reductions in organism burden, and resulted in im-
proved survival curves versus those for pentamidine-treated mice
at the same doses.
9. Huang, T. L.; Vanden Eynde, J. J.; Mayence, A.; Donkor, I. O.; Khan, S. I.; Tekwani,
B. L. J. Pharm. Pharmacol 2006, 58, 1033.
10. Bakunova, S. M.; Bakunov, S. A.; Patrick, D. A.; Wenzler, T.; Barszcz, T.;
Werbovetz, K. A.; Brun, R.; Tidwell, R. R. J. Med. Chem. 2008, 51, 6927.
11. Mayence, A.; Pietka, A.; Collins, M. S.; Cushion, M. T.; Tekwani, B. L.; Huang, T.
L.; Vanden Eynde, J. J. Bioorg. Med. Chem. Lett. 2008, 18, 2658.
12. Rahmathullah, S. M.; Tidwell, R. R.; Jones, S. K.; Hall, J. E.; Boykin, D. W. Eur. J.
Med. Chem. 2008, 43, 174.
13. Arafa, R. K.; Ismail, M. A.; Munde, M.; Wilson, W. D.; Wenzler, T.; Brun, R.;
Boykin, D. W. Eur. J. Med. Chem. 2008, 43, 2901.
14. Alvar, J.; Aparicio, P.; Aseffa, A.; Den Boer, M.; Canavate, C.; Dedet, J-P.; Gradoni,
L.; Ter Horst, R.; Lopez-Velez, R.; Moreno, J. Clin. Micro. Rev. 2008, 21, 334.
15. Vanden Eynde, J. J.; Mayence, A.; Huang, T. L.; Collins, M. S.; Rebholz, S.; Walzer,
P. D.; Cushion, M. T. Bioorg. Med. Chem. Lett. 2004, 14, 4545.
16. Bacchi, C. J.; Nathan, H. C.; Livingston, T.; Valladares, G.; Saric, M.; Sayer, P. D.;
Njogu, A. R.; Clarkson, A. B. Antimicrob. Agents Chemother. 1990, 34, 1183.
17. Donkor, I. O.; Huang, T. L.; Tao, B.; Rattendi, D.; Lane, S.; Vargas, M.; Goldberg,
B.; Bacchi, C. J. Med. Chem. 2003, 46, 1041.
18. Cushion, M. T.; Walzer, P. D.; Ashbaugh, A.; Collins, M. S.; Rebholz, S.; Vanden
Eynde, J. J.; Mayence, A.; Huang, T. L. Antimicrob. Agents Chemother. 2004, 48,
4209.
19. The compounds reported in this study were synthesized in the laboratory of
Professor Tien Huang at Xavier University of Louisiana (New Orleans, LA). N,N0-
Bis[4-(aminoiminomethyl)phenyl] pentanediamide, dihydrochloride salt, (2)
The mechanism of action of bisbenzamidines has been attrib-
uted to strong binding to DNA at AT rich sites followed by subse-
quent inhibition of DNA-dependent enzymes and/or direct
inhibition of transcription.8,20–22 In this series of compounds, the
introduction of poor electron-donating amide groups in the central
linker resulted in significant reduction in DNA binding compared
was synthesized by heating under reflux for 30 min
a mixture of 4-
to pentamidine. The binding (DTm) of pentamidine to poly (dA-
aminobenzamidine monohydrochloride (2.08 g, 10 mmol), glutaryl chloride
(0.64 mL, 5 mmol), and pyridine (8 mL, 100 mmol) in N,N-dimethyl formamide
(40 mL). The precipitate was filtered and thoroughly washed successively with
water and acetone. Yield: 50%. Mp: >300 °C (decomp.). 1H NMR (DMSO-d6):
10.5 (s, 2H); 9.1 (br s, 8H); 7.8 (dd, 8H); 2.5 (t, 4H); 1.9 (q, 2H) ppm. IR: 3094;
1923; 1659; 1604; 1351 cmꢀ1. Anal. Calcd for C19H22N6O2ꢁ2HCl (438.13): C,
51.94; H, 5.51; N, 19.13. Found: C, 51.79; H, 5.31; N, 18.89. (M-H-W
Laboratories, Phoenix, AZ).N,N0-Bis(4-cyanophenyl)pentanediamide, (3) was
dT) was 21.6 °C whereas the values ranged from 7.5 °C to 14.4 °C
for the other bisbenzamidines reported here (data not shown).
Although compounds that demonstrated strong potency against
P. carinii were strong binders to DNA (
pounds 1, 2 and 4), several other poor inhibitors of P. carinii (e.g.,
6 and 10) also showed strong binding to DNA ( Tm = 13.8 °C and
13.2 °C, respectively). These results are consistent with our previ-
ous reports3,6,17,18,23,24 which indicated that the anti-P. carinii or
antitrypanosomal activity of a large number of bisbenzamidines
synthesized in our laboratory do not correlate directly with their
DNA binding affinity.
In conclusion, we have synthesized and evaluated the struc-
ture–activity relationships of a series of alkanediamide-linked bis-
benzamidines as potential new agents against T. brucei and P.
carinii. The high selectivity indexes of these compounds against
both pathogens warrant further investigations especially in animal
models of trypanosomiasis. We will report the findings of such
investigations in the near future.
DTm = 11.4–14.4 for com-
D
synthesized by stirring at room temperature overnight
a mixture of 4-
aminobenzonitrile (9.25 g, 80 mmol), and glutaryl chloride (3.38 g, 20 mmol)
in dioxane (200 mL). The precipitate was filtered and washed successively with
water, ethanol and ether. Yield: 68%. Mp: 238–239 °C. 1H NMR (DMSO-d6):
10.3 (s, 2H); 7.7 (2d, 8H, J = 8 Hz); 2.4 (t, 4H); 1.9 (q, 2H) ppm. IR: 3264; 2221;
1667; 1592; 1506; 1442 cmꢀ1. Anal. Calcd for C19H16N4O2 (332.36): C, 68.66;
H, 4.85; N, 16.86. Found: C, 68.83; H, 5.00; N, 16.69. (M-H-W Laboratories,
Phoenix, AZ).N,N0-Bis[4-(aminocarbonyl)phenyl]hexanediamide, (5) was syn-
thesized by stirring at room temperature overnight
a mixture of 4-
aminobenzamide (5.44 g, 40 mmol), and adipoyl chloride (1.83 g, 10 mmol)
in dioxane (100 mL). The precipitate was filtered and washed successively with
water and ethanol. Yield: 90%. Mp: >300 °C. 1H NMR (DMSO-d6): 10.1 (s, 2H);
7.8 (d, 4H, J = 7 Hz); 7.8 (s, 2H); 7.6 (d, 4H, J = 8 Hz); 7.2 (s, 2H); 2.4 (br m, 4H);
1.6 (m, 4H) ppm. IR: 3371; 3317; 3171; 1672; 1651; 1620; 1512 cmꢀ1. Anal.
Calcd for C20H22N4O4 (382.41): C, 62.82; H, 5.80; N, 14.65. Found: C, 62.75; H,
5.76; N, 14.53. (M-H-W Laboratories, Phoenix, AZ).
20. Beerman, T. A.; McHugh, M. M.; Sigmund, R.; Lown, J. W.; Rao, K. E.; Bathini, Y.
Biochem. Biophys. Acta 1992, 1131, 53.
21. Hildebrandt, E.; Boykin, D. W.; Kumar, A.; Tidwell, R. R.; Dykstra, C. C. J.
Eukaryotic Microbiol. 1998, 45, 112.
Acknowledgments
22. Fitzgerald, D. J.; Anderson, J. N. J. Biol. Chem. 1999, 274, 27128.
23. Tao, B.; Huang, T. L.; Zhang, Q.; Jackson, L.; Queener, S. F.; Donkor, I. O. Eur. J.
Med. Chem. 1999, 34, 531.
24. Huang, T. L.; Tao, B.; Quarshie, Y.; Queener, S. F.; Donkor, I. O. Bioorg. Med.
Chem. Lett. 2001, 11, 2679.
This work was supported by Grant 2S06GM08008 from the Na-
tional Institutes of Health. The authors thank Aixa Rodriguez, Ste-
ven DeChiricho and Eric Sorrentino for technical assistance.