synthesis11 prompted us to explore the function of copper
in the reaction of arynes. Herein, we report the first example
of a copper-catalyzed two-component coupling reaction of
alkynes with arynes and a three-component coupling reaction
of alkynes with allylic chlorides and arynes.
Initially, we performed the reaction of benzyne generated
in situ from 2-(trimethylsilyl)phenyl triflate2 and phenyl
acetylene in the presence of copper catalysts. After certain
optimization work on the reaction, to our delight, the
coupling product of diphenyl acetylene was obtained in an
87% yield without the use of any ligands (Table 1, entry 1).
entries 2-5). A good yield was obtained for ethyl propiolate
(Table 1, entry 6) and the substituted benzyne gave compa-
rable yields with benzyne (Table 1, entries 7 and 8).
Quite interestingly, the cyclotrimerization of benzyne took
place in the absence of alkynes, and a high yield of
triphenylene was isolated in the presence of 20 mol % CuI
in refluxing CH3CN for 24 h (Scheme 1). This result implied
Scheme 1
Table 1. The Copper-Catalyzed Two-Component Coupling
Reaction
that the copper acetylide, which was possibly generated in
situ under the reaction conditions, might be a very active
intermediate for the initiation of the coupling reaction of
alkynes and arynes. A tentative mechanism was proposed
for the above coupling reaction as presented in Scheme 2.
Scheme 2
a Reaction conditions: benzyne precursor (1.2 mmol), terminal alkyne
(1.0 mmol), CsF (365 mg, 2.4 mmol), CuI (19 mg, 0.05 mmol), toluene:
CH3CN ) 3:3 mL, 110 °C (bath temperature), 24 h. b Isolated yield.
A trace of self-coupling product from phenyl acetylene was
observed, but the cocyclization product of arynes and alkynes
that often form in palladium catalysis6a,b was not detected.
Both alkyl and aryl alkynes afforded the desired coupling
products in good yields, and the various aryl substituents in
aryl alkynes tolerated well the reaction conditions (Table 1,
First, the copper acetylide 1 is formed from the terminal
alkyne and copper(I), and the subsequent insertion of benzyne
into the copper acetylide 1 produces the carbocopper
(7) (a) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron
Lett. 2000, 41, 729–731. (b) Jeganmohan, M.; Cheng, C. H. Org. Lett. 2004,
6, 2821–2824. (c) Cheng, C. H.; Jeganmohan, M. Synthesis 2005, 10, 1693–
1697. (d) Jayanth, T. T.; Jeganmohan, M.; Cheng, C. H. Org. Lett. 2005,
7, 2921–2924. (e) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am.
Chem. Soc. 2006, 128, 7426–7427. (f) Henderson, J. L.; Edwards, A. S.;
Greaney, M. F. Org. Lett. 2007, 9, 5589–5592. (g) Liu, Z.; Larock, R. C.
Angew. Chem., Int. Ed. 2007, 46, 1–5.
(4) (a) Jayanth, T. T.; Jeganmohan, M.; Cheng, C. H. J. Org. Chem.
2004, 69, 8445–8450. (b) Quintana, I.; Boersma, A. J.; Pen´a, D.; Pe´rez,
D.; Guitia´n, E. Org. Lett. 2006, 8, 3347–3349. (c) Zhang, X.; Larock, R. C.
Org. Lett. 2005, 7, 3973–3976. (d) Liu, Z.; Zhang, X.; Larock, R. C. J. Am.
Chem. Soc. 2005, 127, 15716–15717. (e) Jayanth, T. T.; Cheng, C. H.
Angew. Chem., Int. Ed. 2007, 46, 5921–5924. (f) Chatani, N.; Kamitani,
A.; Oshita, M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 2005, 125,
12686–12687.
(8) (a) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742–
8743. (b) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. ReV. 2002, 102, 1359–1470.
(5) Pen´a, D.; Escudero, S.; Pe´rez, D.; Guitia´n, E.; Castedo, L. Angew.
Chem., Int. Ed. 1998, 37, 2659–2660.
(9) (a) Eckhardt, M.; Fu, G. C J. Am. Chem. Soc. 2003, 125, 13642–
13643. (b) Batey, R. A.; Shen, M.; Lough, A. J. Org. Lett. 2002, 4, 1411–
1414. (c) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org.
Lett. 2000, 2, 1729–1731. (d) Kllhofer, A.; Pullmann, T.; Plenio, H. Angew.
Chem., Int. Ed. 2003, 42, 1056–1058.
(6) (a) Yoshikawa, E.; Yamamoto, Y. Angew. Chem., Int. Ed. 2000,
39, 173–175. (b) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y.
J. Am. Chem. Soc. 2000, 122, 7280–7286. (c) Radhakrishnan, K. V.;
Yoshikawa, E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533–7535. (d)
Pen´a, D.; Escudero; S.; Pe´rez, D.; Guitia´n, E.; Castedo, L. J. Am. Chem.
Soc. 1999, 121, 5827–5828. (e) Sato, Y.; Tamura, T.; Mori, M. Angew.
Chem., Int. Ed. 2004, 43, 2436–2440. (f) Pen´a, D.; Escudero, S.; Pe´rez,
D.; Guitia´n, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944–6950.
(10) Pansegrau, P. D.; Rieker, W. F.; Meyers, A. I. J. Am. Chem. Soc.
1988, 110, 7178–7184.
(11) (a) Xie, C. S.; Zhang, Y, H.; Huang, Z. D.; Xu, P. X. J. Org. Chem.
2007, 72, 5431–5434. (b) Xie, C. S.; Zhang, Y. H. Org. Lett. 2007, 9, 781–
784.
2394
Org. Lett., Vol. 10, No. 12, 2008