Macromolecules
Article
S.; Kuramochi, Y.; Hirota, S.; Kobuke, Y. Chem.Eur. J. 2011, 17,
855−865. (e) Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891−908.
(5) (a) Patra, A.; Koenen, J.-M.; Scherf, U. Chem. Commun. 2011, 47,
9612−9614. (b) Kameta, N.; Ishikawa, K.; Masuda, M.; Asakawa, M.;
Shimizu, T. Chem. Mater. 2012, 24, 209−228.
formed on the ground states in the P1 model. On the other
hand, each BODIPY unit hardly shows the interaction in the P2
and P3 models. It is known that the fluorescence emission from
BODIPY dyes can be drastically quenched by the aggregation.14
Thereby, the decrease of the emission intensity could be
observed from P1. In contrast, in the P3 model, plane angles of
two BODIPY units are ∼120°, meaning little interaction
between two BODIPYs on a cardo structure. These data
suggest that the rigid and the orthogonal structure of the cardo
should be favorable not only to avoid the concentration
quenching of the dyes but also to accumulate the emissive dyes
without unexpected changes in the electronic properties.
(6) Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle,
R. Nat. Chem. 2011, 3, 763−774.
(7) (a) Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J.
Angew. Chem., Int. Ed. 2007, 46, 6260−6265. (b) Abbel, R.; Grenier,
C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclere, P. E. L. G.; Sijbesma,
R. P.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2009, 131,
833−843.
(8) Yeo, H.; Tanaka, K.; Chujo, Y. J. Polym. Sci., Part A: Polym. Chem.
2012, 50, 4433−4442.
(9) (a) Liu, S.-J.; Xu, W.-J.; Ma, T.-C.; Zhao, Q.; Fan, Q.-L.; Ling, Q.-
D.; Huang, W. Macromol. Rapid Commun. 2010, 31, 629−6333.
(b) Evans, N. R.; Devi, L. S.; Mak, C. S. K.; Watkins, S. E.; Pascu, S. I.;
CONCLUSION
■
We present the first example to offer the schematic information
on the changes of optical properties of the dyes depending on
the location at the PF main chains. Considering the
experimental results described here, we summarize that three
significant advantages on the usages of the cardo structure
involving PFs as a scaffold: (i) Large light absorption and
effective energy transfer can be obtained. (ii) The intrinsic
property of the dye can be observed after conjugation with the
cardo PFs. (iii) The desired optical properties can be received
in the film state. Finally, highly effective LHA systems were
realized based on the BODIPY-tethered cardo PFs. Advanced
LHA systems based on our design concept for higher efficiency
or diverse light wavelength of absorption and emission are
promised to be realized by modulating the location, the
numbers, and the type of chromophores. In addition, further
applications are in progress to utilize the cardo fluorene as a
scaffold for constructing highly functional optical materials.
Kohler, A.; Friend, R. H.; Williams, C. K.; Holmes, A. B. J. Am. Chem.
̈
Soc. 2006, 128, 6647−6656. (c) Ego, C.; Marsitzky, D.; Becker, S.;
Zhang, J.; Grimsdale, A. C.; Mullen, K.; MacKenzie, J. D.; Silva, C.;
̈
Friend, R. H. J. Am. Chem. Soc. 2003, 125, 437−443. (d) Chen, X.;
Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am.
Chem. Soc. 2003, 125, 636−637. (e) Wang, L.; Puodziukynaite, E.;
Vary, R. P.; Grumstrup, E. M.; Walczak, R. M.; Zolotarskaya, O. Y.;
Schanze, K. S.; Reynolds, J. R.; Papanikolas, J. M. J. Phys. Chem. Lett.
2012, 3, 2453−2457. (f) Buckley, A. R.; Rahn, M. D.; Hill, J.;
Cabanillas-Gonzalez, J.; Fox, A. M.; Bradley, D. D. C. Chem. Phys. Lett.
2001, 339, 331−336. (g) Thivierge, C.; Loudet, A.; Burgess, K.
Macromolecules 2011, 44, 4012−4015. (h) Wu, C.; Zheng, Y.;
Szymanski, C.; McNeill, J. J. Phys. Chem. C 2008, 112, 1772−1781.
(i) Becker, K.; Lupton, J. M. J. Am. Chem. Soc. 2006, 128, 6466−6479.
(j) Russell, D. M.; Arias, A. C.; Friend, R. H.; Silva, C.; Ego, C.;
Grimsdale, A. C.; Mullen, K. Appl. Phys. Lett. 2002, 80, 2204−2206.
̈
(k) Troshin, P. A.; Koeppe, R.; Susarova, D. K.; Polyakova, N. V.;
Peregudov, A. S.; Razumov, V. F.; Sariciftci, N. S.; Lyubovskaya, R. N.
J. Mater. Chem. 2009, 19, 7738−7744. (l) He, F.; Feng, F.; Wang, S.;
Li, Y.; Zhu, D. J. Mater. Chem. 2007, 17, 3702−3707.
ASSOCIATED CONTENT
■
S
* Supporting Information
(10) Khan, A. L. T.; Sreearunothai, P.; Herz, L. M.; Banach, M. J.;
Figures S1−S23 and Table S1. This material is available free of
Kohler, A. Phys. Rev. B 2004, 69, 085201.
̈
(11) Hsu, F.-M.; Chien, C.-H.; Shu, C.-F.; Lai, C.-H.; Hsieh, C.-C.;
Wang, K.-W.; Chou, P.-T. Adv. Funct. Mater. 2009, 19, 2834−2843.
(12) He, F.; Ren, X.; Shen, X.; Xu, Q.-H. Macromolecules 2011, 44,
5373−5380.
AUTHOR INFORMATION
Corresponding Author
2605; Ph +81-75-383-2604.
■
(13) (a) Jin, J.-K.; Kwon, S.-K.; Kim, Y.-H.; Shin, D.-C.; You, H.;
Jung, H.-T. Macromolecules 2009, 42, 6339−6347. (b) Wu, F.-I.; Shih,
P.-I.; Shu, C.-F. Macromolecules 2005, 38, 9028−9036.
(14) (a) Kubota, Y.; Uehara, J.; Funabiki, K.; Ebihara, M.; Matsui, M.
Tetrahedron Lett. 2010, 51, 6195−6198. (b) Zhang, D.; Wen, Y.; Xiao,
Y.; Yu, G.; Liu, Y.; Qian, X. Chem. Commun. 2008, 4777−4779.
(c) Hepp, A.; Ulrich, G.; Schmechel, R.; Von Seggern, H.; Ziessel, R.
Synth. Met. 2004, 146, 11−15.
(15) (a) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed.
2008, 47, 1184−1201. (b) Ziessel, R.; Ulrich, G.; Harriman, A. New J.
Chem. 2007, 31, 496−501. (c) Bones, N.; Leen, V.; Dehaen, W. Chem.
Soc. Rev. 2012, 41, 1130−1172.
(16) (a) Ziessel, R.; Harrimanb, A. Chem. Commun. 2011, 47, 611−
631. (b) El-Khouly, M. E.; Amin, A. N.; Zandler, M. E.; Fukuzumi, S.;
D’Souza, F. Chem.Eur. J. 2012, 18, 5239−5247. (c) Gabe, Y.; Urano,
Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2004, 126,
3357−3367. (d) Mula, S.; Ray, A. K.; Banerjee, M.; Chaudhuri, T.;
Dasgupta, K.; Chattopadhyay, S. J. Org. Chem. 2008, 73, 2146−2154.
(17) Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007−2009.
(18) Dieter, N. Macromol. Rapid Commun. 2001, 22, 1365−1385.
(19) Gu, Z.-Y.; Guo, D.-S.; Sun, M.; Liu, Y. J. Org. Chem. 2010, 75,
3600−3607.
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Chen, C.-Y.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Chen, J.-G.; Ho,
K.-C. Adv. Mater. 2007, 19, 3888−3891. (b) Hasobe, T.; Hattori, S.;
Kamat, P. V.; Wada, Y.; Fukuzumi, S. J. Mater. Chem. 2005, 15, 372−
380. (c) Warnan, J.; Pellegrin, Y.; Blart, E.; Odobel, F. Chem. Commun.
2012, 48, 675−677. (d) Li, Y.; Bian, Y.; Yan, M.; Thapaliya, P. S.;
Johns, D.; Yan, X.; Galipeau, D.; Jiang, J. J. Mater. Chem. 2011, 21,
11131−11141.
(2) (a) Brovelli, S.; Meinardi, F.; Winroth, G.; Fenwick, O.;
Sforazzini, G.; Frampton, M. J.; Zalewski, L.; Levitt, J. A.; Marinello,
F.; Schiavuta, P.; Suhling, K.; Anderson, H. L.; Cacialli, F. Adv. Funct.
Mater. 2010, 20, 272−280. (b) Chen, Z.; Jiang, C.; Niu, Q.; Peng, J.;
Cao, Y. Org. Electron. 2008, 9, 1002−1009.
(3) Collini1, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer,
P.; Scholes, G. D. Nature 2010, 463, 644−647.
(4) (a) Taranekar, P.; Huang, C.; Fulghum, T. M.; Baba, A.; Jiang, G.;
Park, J.-Y.; Advincula, R. C. Adv. Funct. Mater. 2008, 18, 347−354.
(b) Wu, C.; Zheng, Y.; Szymanski, C.; McNeill, J. J. Phys. Chem. C
2008, 112, 1772−1781. (c) Wu, C.; Bull, B.; Christensen, K.; McNeill,
J. Angew. Chem., Int. Ed. 2009, 48, 2741−2745. (d) Satake, A.; Azuma,
G
dx.doi.org/10.1021/ma400015d | Macromolecules XXXX, XXX, XXX−XXX