Organic Letters
Letter
Notes
second-generation catalyst at high dilution (1 mM) to prevent
competing intermolecular reactions and solely gave the
anticipated pre-rotaxane 4 in 80% yield as an E/Z mixture of
isomers. Catalytic hydrogenation to remove this mixture was
performed at 60 °C to ensure full conversion and gave pre-
rotaxane 4-H4 in almost quantitative yield.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank The Netherlands Organization for Scientific
Research (NWO-CW, ECHO Grant 711.012.009 to J.H.v.M). E.
Zuidinga and J. M. Ernsting (University of Amsterdam) are
acknowledged for mass spectrometry and NMR assistance.
Despite the absence of the olefinic E/Z mixture, the 1H NMR
spectrum remained complex with broad signals (see the
ment of the ring fragment. A first sign that indeed the rotaxane
architecture had been obtained was the fact that the final cleavage
steps to liberate the mechanically interlocked [2]rotaxane
skeleton required harsh conditions to overcome the steric
hindrance around the endocyclic ester bonds. Unexpectedly,
reaction with excess methylamine at 50 °C, used in a similar case
REFERENCES
■
(1) The Nature of the Mechanical Bond: From Molecules to Machines;
Bruns, C. J., Stoddart, J. F., Eds.; Wiley: Hoboken, NJ, 2016.
(2) (a) Vogtle, F.; Handel, M.; Meier, S.; Ottens-Hildebrandt, S.; Ott,
̈
̈
F.; Schmidt, T. Liebigs Ann. Chem. 1995, 1995, 739. (b) Johnston, A. G.;
Leigh, D. A.; Murphy, A.; Smart, J. P.; Deegan, M. D. J. Am. Chem. Soc.
1996, 118, 10662.
(3) (a) Ashton, P. R.; Glink, P. T.; Stoddart, J. F.; Tasker, P. A.; White,
A. J. P.; Williams, D. J. Chem. - Eur. J. 1996, 2, 729. (b) Thibeault, D.;
Morin, J.-F. Molecules 2010, 15, 3709.
(4) Ashton, P. R.; Grognuz, M.; Slawin, A. M. Z.; Stoddart, J. F.;
Williams, D. J. Tetrahedron Lett. 1991, 32, 6235.
(5) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kern, J. M. J. Am. Chem.
Soc. 1984, 106, 3043.
(6) (a) Hannam, J. S.; Lacy, S. M.; Leigh, D. A.; Saiz, C. G.; Slawin, A.
M. Z.; Stitchell, S. G. Angew. Chem., Int. Ed. 2004, 43, 3260. (b) Chao, S.;
Romuald, C.; Fournel-Marotte, K.; Clavel, C.; Coutrot, F. Angew. Chem.,
Int. Ed. 2014, 53, 6914. (c) Steemers, L.; Wanner, M. J.; Lutz, M.;
Hiemstra, H.; van Maarseveen, J. H. Nat. Commun. 2017, 8, 15392.
(7) (a) Schill, G.; Luttringhaus, A. Angew. Chem., Int. Ed. Engl. 1964, 3,
546. (b) Schill, G.; Zollenkopf, H. Liebigs Ann. Chem. 1969, 721, 53.
(8) Harrison, I. T.; Harrison, S. J. Am. Chem. Soc. 1967, 89, 5723.
(9) (a) Unsal, O.; Godt, A. Chem. - Eur. J. 1999, 5, 1728. (b) Hiratani,
K.; Suga, J.-I.; Nagawa, Y.; Houjou, H.; Tokuhisa, H.; Numata, M.;
Watanabe, K. Tetrahedron Lett. 2002, 43, 5747. (c) Hiratani, K.;
Kaneyama, M.; Nagawa, Y.; Koyama, Y.; Kanesato, M. J. Am. Chem. Soc.
2004, 126, 13568. (d) Kameta, N.; Hiratani, K.; Nagawa, Y. Chem.
Commun. 2004, 466. (e) Hirose, K.; Nishihara, K.; Harada, N.;
Nakamura, Y.; Masuda, D.; Araki, M.; Tobe, Y. Org. Lett. 2007, 9, 2969.
(f) Kawai, H.; Umehara, T.; Fujiwara, K.; Tsuji, T.; Suzuki, T. Angew.
Chem., Int. Ed. 2006, 45, 4281. (g) Schweez, C.; Shushkov, P.; Grimme,
by Hoger (with n-propylamine), did not give any aminolysis
̈
product. Even transesterification with excess sodium methoxide
failed to give any conversion. Nevertheless, saponification
proceeded well using aqueous KOH in a sealed tube in 1,4-
dioxane at 130 °C, giving complete conversion in 2 h to a single,
fairly polar product. To facilitate chromatographic purification,
the carboxylic acids were transformed into methyl esters using
TMS-diazomethane, providing pure [2]rotaxane 1 after
chromatographic purification in 89% yield over two steps.
High-resolution field-desorption mass spectrometry of 1 showed
the expected molecular weight of 1953.3888 Da corresponding
to the bruto formula of C130H180N6O8, ultimately proving that
1
̈
indeed the [2]rotaxane skeleton was obtained. The H NMR
spectrum of [2]rotaxane 1 shows sharp and symmetric signals,
probably indicating a weak hydrogen bond between the phenolic
̈
̈
hydroxyl groups and the ester carbonyls. In contrast to Hoger’s
̈
case, no dethreading was observed despite the fact that a
temperature of 130 °C was required for the final ester cleavage
step.
In conclusion, we have developed a convergent and robust
synthetic route toward [2]rotaxanes using a temporary covalent
template to correctly position the ring precursors for the
clipping-type cyclization over the thread fragment. Saponifica-
tion disconnects the template-containing thread from the ring
fragment in the last step. This strategy gives facile access to
[2]rotaxanes with an all-carbon ring fragment that lacks the
currently common functional groups that are required for the
supramolecular preorganization during the synthesis. Further
work on all-carbon rotaxanes and catenanes and further
functionalization for various applications in materials and
pharmaceutical research fields is in progress.
S.; Hoger, S. Angew. Chem., Int. Ed. 2016, 55, 3328.
̈
(10) Cantin, K.; Lafleur-Lambert, A.; Dufour, P.; Morin, J.-F. Eur. J.
Org. Chem. 2012, 2012, 5335.
(11) Becker, K.; Lagoudakis, P. G.; Gaefke, G.; Hoger, S.; Lupton, J. M.
Angew. Chem., Int. Ed. 2007, 46, 3450.
(12) Gradillas, A.; Per
6086.
(13) Boughton, B. A.; Hor, L.; Gerrard, J. A.; Hutton, C. A. Bioorg. Med.
Chem. 2012, 20, 2419.
(14) Masuo, R.; Ohmori, K.; Hintermann, L.; Yoshida, S.; Suzuki, K.
Angew. Chem., Int. Ed. 2009, 48, 3462.
(15) (a) Gibson, H. W.; Lee, S.-H.; Engen, P. T.; Lecavalier, P.; Sze, J.;
Shen, Y. X.; Bheda, M. J. Org. Chem. 1993, 58, 3748. (b) Barlan, A. U.;
Basak, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2006, 45, 5849.
(16) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
̈
́
ez-Castells, J. Angew. Chem., Int. Ed. 2006, 45,
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Full experimental and characterization data for all
compounds and the coordinates and structures from the
theoretical calculations (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
D
Org. Lett. XXXX, XXX, XXX−XXX