18
J. Uddin Ahmad et al. / Journal of Molecular Structure 995 (2011) 9–19
Table 6
phenol group and the imine nitrogen the structures of the ligands
are already preorganized and act as a bidentate chelate ligand
rather than a bridging ligand in complexation reactions.
Selected dihedral angles (°) for the optimized compounds showing energy minima at
the B3LYP/6–311Gꢁ level of theory.
Compound Point
group
O1–C1–C6– C1–C6–C7– C6–C7–N8– H–O1–C1–
C7
N8
C9
C6
Acknowledgments
1
2
3
4
5
6
7
C1
C1
C1
Cs
Cs
C1
C1
ꢂ0.09
0.27
0.46
ꢂ0.64
0.81
ꢂ177.45
177.35
0.21
0.15
ꢂ0.35
0.00
Financial support from the Graduate School of Inorganic
Material Chemistry and the International Student Grant of Univer-
sity of Helsinki is gratefully acknowledged. MRS acknowledges the
generous computing time given by CSC (CSC–IT Center for Science
Ltd., Finland).
ꢂ0.33
ꢂ176.82
0.00
0.00
180.00
0.00
0.00
180.00
0.00
ꢂ0.02
ꢂ0.74
ꢂ179.54
2.00
ꢂ0.33
ꢂ0.42
0.38
ꢂ179.85
Appendix A. Supplementary material
Table 7
Natural charges for the optimized compounds calculated at the B3LYP/6–311Gꢁ level
of theory.
Supplementary data associated with this article can be found, in
Atoms
1
2
3
4
5
6
7
H1
O1
C1
C6
C7
N8
C9
0.498
ꢂ0.690 ꢂ0.692 ꢂ0.683 ꢂ0.696 ꢂ0.697 ꢂ0.697 ꢂ0.695
0.397 0.392 0.402 0.392 0.388 0.389 0.392
ꢂ0.177 ꢂ0.174 ꢂ0.181 ꢂ0.175 ꢂ0.172 ꢂ0.175 ꢂ0.176
0.167 0.165 0.178 0.155 0.156 0.164 0.156
ꢂ0.544 ꢂ0.540 ꢂ0.553 ꢂ0.547 ꢂ0.538 ꢂ0.538 ꢂ0.538
0.150 0.142
0.182 ꢂ0.001 ꢂ0.007 ꢂ0.183 ꢂ0.155
0.498
0.498
0.497
0.497
0.499
0.497
References
[1] Q. Han, F. Jian, L. Lu, X. Yang, X. Wang, J. Chem. Crystallogr. 31 (2001) 247.
[2] A.L. Iglesias, G. Aguirre, R. Somanasamy, M.P. Hake, Polyhedron 23 (2004)
3051.
[3] H. Nozaki, H. Takaya, S. Moriuti, R. Noyori, Tetrahedron 24 (1968) 3655.
[4] Z. Zheng, M. Han, H.L. Chen, Chin. Chem. Lett. 7 (1996) 739.
[5] Z. Li, Z. Zheng, H. Cheng, Tetrahedron: Asymmetry 11 (2000) 1157.
[6] T. Aratani, Pure Appl. Chem. 57 (1985) 1839.
[7] Z. Li, M. Fernandez, E.N. Jacobsen, Org. Lett. 1 (1999) 1611.
[8] R.M. Wang, C.J. Hao, Y.P. Wang, S.B. Li, J. Mol. Catal. 147 (1999) 173.
[9] R.M. Wang, C.J. Hao, Y.F. He, Y.P. Wang, C.G. Xia, Polym. Adv. Technol. 13 (2002)
6.
[10] N. Kitajima, K. Whang, Y. Morooka, A. Uchida, Y. Sasada, J. Chem. Soc., Chem.
Commun. 20 (1986) 1504.
[11] Y. Wang, T.D.P. Stack, J. Am. Chem. Soc. 118 (1996) 13097.
[12] J. Huang, B. Lian, Y. Qian, W. Zhou, W. Chen, G. Zheng, Macromolecules 35
(2002) 4871.
[13] M. Mitani, J. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsugi, N. Kashiwa,
T. Fujita, J. Am. Chem. Soc. 24 (2002) 3327.
[14] (a) V.G. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283;
(b) T. Repo, M. Klinga, P. Pietikäinen, M. Leskelä, Macromolecules 30 (1997)
171.
[15] A. Pärssinen, T. Luhtanen, M. Klinga, T. Pakkanen, M. Leskelä, T. Repo,
Organometallics 26 (2007) 3690.
Table 8
Second order perturbation theory analysis of Fock matrix. Stabilization energies in
kcal/mol.a
Ligands
1
2
3
4
5
6
7
Enol
Keto
r
n(N) ?
r
a(O–H) 25.54 24.82 23.64 n.d.
16.65 17.84 16.79 15.56 16.65 16.61 15.47
3.72 3.82 3.74 3.57 3.72 3.66 3.47
20.37 21.66 20.53 19.13 20.37 20.27 18.94
5.17 3.16 3.11 4.81 4.90 6.88
25.18 25.17 25.82
r
n(O) ?
r
a(N–H)
Difference
–
n.d., not detected.
a
In the keto form the minor component is shown italics and the sum value is
underlined.
[16] A. Pärssinen, T. Luhtanen, M. Klinga, T. Pakkanen, M. Leskelä, T. Repo, Eur. J.
Inorg. Chem. 11 (2005) 2100.
[17] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, S.T. Patel, R.V. Jasra, Tetrahedron:
Asymmetry 12 (2001) 433.
[18] A. Berkessel, M. Frauenkron, T. Schwenkreis, A. Steinmetz, J. Mol. Catal. 117
(1997) 339.
[19] L. Canali, D.C. Sherrington, H. Deleuze, React. Funct. Polym. 40 (1999) 155.
[20] A.G. Dossetter, T.F. Jamison, E.N. Jacobsen, Angew. Chem., Int. Ed. Eng. 38
(1999) 2398.
[21] Z. Chenghe, G. Linling, Z. Yiyi, Z. Feifei, W. Guangzhou, J. Lei, G. Rongxi, Sci.
China Ser. B – Chem. 52 (2009) 415.
tal. In the keto form the corresponding charge transfer occurs be-
tween two lone pairs of oxygen into the N–H antibonding molecu-
lar orbital. The two contributions in terms of stabilizing energy are
not equal. However, the sum of the energies is always smaller for
the keto forms than the value in the corresponding enol form.
The smallest difference is found for the compounds 2 and 3. Both
of these have a p-substituted phenyl ring connected to nitrogen.
[22] N.H. Gokhale, K. Shirisha, S.B. Padhye, S.L. Croft, H.D. Kendrick, V. Mckee,
Bioorg. Med. Chem. Lett. 16 (2006) 430.
[23] A. Filarowski, J. Phys. Org. Chem. 18 (2005) 686.
[24] E. Hadjoudis, M. Vitterakis, I. Mavridis, Tetrahedron 43 (1987) 1345.
[25] T. Fujiwara, J. Harada, K. Ogawa, J. Phys. Chem. B 108 (2004) 4035.
[26] J. Harada, H. Uekusa, Y. Ohashi, J. Am. Chem. Soc. 121 (1999) 5809.
[27] I.M. Mavridis, E. Hadjoudis, A. Mavridis, Acta Crystallogr. B34 (1978) 3709.
[28] A. Elmali, Y. Eleman, C.T. Zeyrek, J. Mol. Struct. 443 (1998) 123.
[29] (a) M.T. Räisänen, P. Elo, M. Kettunen, M. Klinga, M. Leskelä, T. Repo, Synth.
Comun. 37 (2009) 1;
(b) Z. Popovic, G. Popovic, D.M. Calogovic, V. Roje, I. Leban, J. Mol. Struct. 615
(2002) 23.
[30] J.U. Ahmad, P.J. Figiel, M.T. Räisänen, M. Leskelä, T. Repo, Appl. Catal. A 371
(2009) 17.
[31] V.T. Kasumov, A. Bulut, F. Köksal, M. Aslanoglu, I. Ucar, C. Kazak, Polyhedron 25
(2006) 1133.
[32] (a) M.J. Heravi, A.A. Khandar, I. Sheishoaie, Spectrochim. Acta A 55 (1999)
2537;
(b) K. Ogawa, Y. Kasahara, Y. Ohtani, J. Harada, J. Am. Chem. Soc. 120 (1998)
7107.
[33] K. Ogawa, J. Harada, T. Fujiwara, S. Yoshida, J. Phys. Chem. A 105 (2001) 3425.
[34] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112.
[35] H.D. Flack, Acta Crystallogr. A 39 (1983) 876.
4. Conclusions
A series of sterically hindered, 3,5-di-tert-butyl salicylaldimine
derivatives were synthesized and characterized by spectroscopic
methods. Solid state structures of the compounds were determined
by X-ray crystallography. In solid state, regardless of whether there
was an electron releasing (Me) or withdrawing (NO2) group, all
molecules possessed
a strong intramolecular hydrogen bond
(O1–Hꢀ ꢀ ꢀN8), forming a nearly planar six-membered ring. Accord-
ing to UV–vis, IR and NMR studies, this structure is also present in
solution. Computational results also revealed that in each
keto-enol pair, the enol form is more stable and the differences
in energy vary from 5.5 to 10.1 kJ/mol. It is noteworthy that the
tert-butyl groups in 1–7, due to their bulkiness and proximity to
the O–Hꢀ ꢀ ꢀN hydrogen bond, hamper the formation of an intermo-
lecular hydrogen bond between the imine and a solvent molecule.
Due to the strong intramolecular hydrogen bonding between the
[36] A. Karakas, A. Elmali, H. Unver, I. Svoboda, J. Mol. Struct. 702 (2004) 103.
[37] S.D. Chatziefthimiou, Y.G. Lazarou, E. Hadjoudis, T. Dziembowska, I.M.
Mavridis, J. Phys. Chem. B 110 (2006) 23701.