Journal of the American Chemical Society
Page 4 of 5
(1) Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T. D.
Adv. Mater. 2010, 22, 3778.
(2) Di, C.; Zhang, F.; Zhu, D. Adv. Mater. 2013, 25, 313.
1
2
3
4
5
6
7
8
(3) Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas,
S.; Chiba, R.; Kumai, R.; Hasegawa, T. Nature 2011, 475, 364.
(4) Giri, G.; Verploegen, E.; Mannsfeld, S.; AtahanꢀEvrenk, S.;
Kim, D. H.; Lee, S. Y.; Becerril, H. A.; AspuruꢀGuzik, A.; Toney, M.
F.; Bao, Z. Nature 2011, 480, 504.
(5) Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld,
C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Nat.
Commun. 2014, 5, 3005.
(6) Mitsui, C.; Okamoto, T.; Yamagishi, M.; Tsurumi, J.; Yoꢀ
shimoto, K.; Nakahara, K.; Soeda, J.; Hirose, Y.; Sato, H.; Yamano,
A.; Uemura, T.; Takeya, J. Adv. Mater. 2014, 26, 4546.
(7) Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Adv. Maꢀ
ter. 2011, 23, 4347.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 6. (a) Transfer curves and (b) mobility and Vth of DBTTT
at different temperatures.
(8) Takimiya, K.; Osaka, I.; Mori, T.; Nakano, M. Acc. Chem. Res.
2014, 47, 1493.
(9) Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129,
2224.
We have designed and efficiently synthesized a novel orꢀ
ganic semiconductor with thermal stability and durability. The
highꢀperformance transistor characteristics originated from the
unique interaction between DBTTT molecules owing to the
additional thiophenes, resulting in closer contact in the crystal
lattice. In addition to the strong π–π stacking interaction, the
intermolecular networking in the crystal lattice through S···S
van der Waals contacts dramatically enhanced the chargeꢀ
carrying mobility to 19.3 cm2·V‒1·s‒1 in a polycrystalline thinꢀ
film transistor. The isotropic chargeꢀtransfer characteristics of
singleꢀcrystalline FETs are considered an additional benefit
for facilitating charge transfer in multigrain thin films.27,28
Based on these results, we conclude that DBTTT can be a very
promising candidate for practical application in future organic
electronics.
(10) Zschieschang, U.; Ante, F.; Kalblein, D.; Yamamoto, T.;
Takimiya, K.; Kuwabara, H.; Ikeda, M.; Sekitani, T.; Someya, T.;
BlochwitzꢀNimoth, J.; Klauk, H. Org. Electron. 2011, 12, 1370ꢀ1375.
(11) Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota,
T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T.;
Takimiya, K.; Ikeda, M.; Kuwabara, H.; Sekitani, T.; Loo, Y.ꢀL.;
Someya, T. Nat. Commun. 2012, 3, 723.
(12) Ante, F.; Kalblein, D.; Zschieschang, U.; Canzler, T. W.;
Werner, A.; Takimiya, K.; Ikeda, M.; Sekitani, T.; Someya, T.; Klauk,
H. Small 2011, 7, 1186.
(13) Niimi, K.; Shinamura, S.; Osaka, I.; Miyazaki, E.; Takimiya,
K. J. Am. Chem. Soc. 2011, 133, 8732.
(14) Sokolov, A. N.; AtahanꢀEvrenk, S.; Mondal, R.; Akkerman, H.
B.; SanchezꢀCarrera, R. S.; GranadosꢀFocil, S.; Schrier, J.; Mannsfeld,
C. B.; Zoombelt, A. P.; Bao, Z.; AspuruꢀGuzik, A. Nat. Commun.
2011, 2, 437.
(15) Kang, M. J.; Doi, I.; Mori, H.; Miyazaki, E.; Takimiya, K.;
Ikeda, M.; Kuwabara, H. Adv. Mater. 2011, 23, 1222.
(16) Niimi, K.; Kang, M. J.; Miyazaki, E.; Osaka, I.; Takimiya, K.
Org. Lett. 2011, 13, 3430.
(17) Hofmockel, R.; Zschieschang, U.; Kraft, U.; Rȍdel, R.; Hanꢀ
sen, N. H.; Stolte, M.; Wűrthner, F.; Takimiya, K.; Kern, K.; Pflaum,
J.; Klauk, H. Org. Electron. 2013, 14, 3213.
(18) Matsumoto, T.; OuꢀYang, W.; Miyake, K.; Uemura, T.;
Takeya, J. Org. Electron. 2013, 14, 2590.
(19) Yokota, T.; Kuribara, K.; Tokuhara, T.; Zschieschang, U.;
Klauk, H.; Takimiya, K.; Sadamitsu, Y.; Hamada, M.; Sekitani, T.;
Someya, T. Adv. Mater. 2013, 25, 3639.
(20) Amin, A. Y.; Khassanov, A.; Reuter, K.; MeyerꢀFriedrichsen,
T.; Halik, M. J. Am. Chem. Soc. 2012, 134, 16548.
(21) Wex, B.; Kaafarani, B. R.; Kirschbaum, K.; Neckers, D. C. J.
Org. Chem. 2005, 70, 4502.
(22) ADF2008.01; SCM, Theoretical Chemistry, Vrije Universiteit:
date is Oct. 14, 2014)
(23) Marcus, R. A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1111.
(24) Headrick, R. L.; Wo, S.; Sansoz, F.; Anthony, J. E. Appl. Phys.
Lett. 2008, 92, 063302.
(25) Laudise, R. A.; Kloc, Ch.; Simpkins, P. G.; Siegrist, T. J.
Cryst. Growth 1998, 187, 449.
(26) Jiang, L; Gao, J.; Wang, E.; Li, H.; Wang, Z.; Hu, W.; Jiang, L.
Adv. Mater. 2008, 20, 2735.
(27) Reese, C.; Roberts, M. E.; Parkin, S. R.; Bao, Z. Appl. Phys.
Lett. 2009, 94, 202101.
(28) Lee, S. S.; Loth, M. A.; Anthony, J.; Loo, Y.ꢀL. J. Am. Chem.
Soc. 2012, 134, 5436.
ASSOCIATED CONTENT
Supporting Information.
Experimental details, synthesis, characterization, device fabricaꢀ
tion, theoretical studies, and crystal data. This material is availaꢀ
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡J.P. and J.W.C. contributed equally to the manuscript. All authors
revised and approved the manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors gratefully acknowledge W. Hu (ICCAS) for supportꢀ
ing the fabrication of SCꢀFET devices, K.E. Lee (SKKU) for her
assistance with the work on Xꢀray single crystallography, A. Asꢀ
puruꢀGuzik (Harvard University) for providing DATT crystal
structure files, and Z. Bao (Stanford University) for useful discusꢀ
sions. This work was supported in part by the Global Leading
Technology Program funded by the Ministry of Trade, Industry
and Energy, Republic of Korea. (10042419).
REFERENCES
ACS Paragon Plus Environment