incorporate fluorophores to facilitate distinction of modified
proteins15 and peptides from the unmodified ones during LC-MS
analyses,16,17 while others introduce chemically cleavable func-
tionalities.18–20 Affinity tags such as biotin labels have also shown
promise as a means to enrich the cross-linked peptides from
complex mixtures prior to mass spectrometry.20–22 Cross-linkers
have also been designed with gas-phase labile bonds such that
traceable fragment ions unique to cross-linked peptides are formed
upon low-energy activation during MS/MS analysis.20,23–25
Interpretation of the cross-linked peptide product ion spectra,
which typically contain diagnostic fragment ions both to locate
the cross-link and to sequence the peptides, remains a difficult
challenge even with available software. Several algorithms have
been written to aid in the identification of intact cross-linked
peptides based on product ion spectra of these species, but they
do not take into account all of the possible product ions specific
to cross-linked peptides.26–31 Initial work by Schilling et al.
demonstrated that dissociation of cross-linked peptides typically
resulted in cleavage of an amide bond of one peptide, yielding
one unmodified fragment and the corresponding fragment linked
to the other peptide.26 A recent systematic study in our laboratory
indicated that intermolecularly cross-linked peptides without a
mobile proton yielded a high degree of internal ions, as well as
other double-cleavage products, which make interpretation of the
product ion spectra difficult.32 Thus, developing new chemical
cross-linkers to reduce the complexity of the product ion spectra
is still an ongoing area of interest. Recent work by Soderblom et
al. reported the design of a cross-linker in which a gas-phase labile
bond was inserted in the chemical cross-linker, thus cleaving upon
low-energy collisions to yield the two constituent peptides.33,34
Bruce and co-workers developed a similar strategy using cross-
linkers with two labile bonds that upon dissociation produce the
two peptides in addition to a diagnostic reporter fragment ion.24,25
After cleavage of the labile bond of these cross-linkers, the two
modified peptides are then further interrogated via MS3 to
sequence each peptide.
Our aim is to develop a chemical cross-linking technique in
conjunction with photodissociation methods to eliminate the need
for MSn
experiments and streamline the analysis of cross-linked
peptides. Infrared multiphoton dissociation (IRMPD) has shown
promise as an alternative means to activate and dissociate
biomolecules in the gas phase35,36 and has been shown to be an
effective means to selectively dissociate phosphopeptides in both
FTICR37,38 and quadrupole ion trap (QIT) mass spectrometers.39,40
Previous work in our laboratory39 and by Flora and Muddiman37,38,41
have shown that the phosphate group has a high absorption at
the wavelength of a continuous wave CO2 laser, 10.6 µm. Because
of the large differences in absorption efficiency of phosphopeptides
and unmodified peptides, phosphopeptides dissociate upon IR
irradiation far more readily than unmodified peptides.
IRMPD in QITs offers other advantages over conventional
collisional activation methods.36,42–47 IRMPD is a nonresonant
activation process whose efficiency is independent of the rf
trapping voltage, thus allowing a much broader m/z trapping range
than conventional CID. This feature is particularly important for
detection of key terminal sequence ions in the low m/z range.
Ion losses due to collisions or unstable trajectories are eliminated
as the photodissociation process does not affect the translational
motion of ions. The nonresonant nature of photodissociation
methods also yields secondary and higher order product ions that
might only be obtained by MSn approaches using CID.
In the present study, we have developed a novel IR-chromoge-
nic cross-linker that incorporates a phosphate chromophore that
allows the identification of cross-linked peptides and facilitates the
interpretation of the product ion spectra of the constituent
peptides. IRMPD in a linear quadrupole ion trap is used to
selectively dissociate the cross-linked peptides, allowing for these
peptides to be easily distinguished from unmodified peptides (i.e.,
ones that do not afford any protein contact information). The
resulting IRMPD spectra of intermolecularly cross-linked peptides
(13) Chu, F.; Mahrus, S.; Craik, C. S.; Burlingame, A. L. J. Am. Chem. Soc. 2006,
128, 10362–10363
.
(14) Ihling, C.; Schmidt, A.; Kalkhof, S.; Schulz, D. M.; Stingl, C.; Mechtler, K.;
Haack, M.; Beck-Sickinger, A. G.; Cooper, D. M. F.; Sinz, A. J. Am. Soc.
Mass Spectrom. 2006, 17, 1100–1113.
(15) Wine, R. N. ; Dial, J. M. ; Tomer, K. B. ; Borchers, C. H. Anal. Chem. 2002,
74, 1939–1945
(16) Sinz, A.; Wang, K. Biochemistry 2001, 40, 7903–7913
(17) Sinz, A.; Wang, K. Anal. Biochem. 2004, 331, 27–32
(18) Bennett, K. L.; Kussmann, M.; Bjork, P.; Godzwon, M.; Mikkelsen, M.;
Sorensen, P.; Roepstorff, P. Protein Sci. 2000, 9, 1503–1518
(19) Petrotchenko, E. V.; Olkhovik, V. K.; Borchers, C. H. Mol. Cell. Proteomics
2005, 4, 1167–1179
(20) Trester-Zedlitz, M.; Kamada, K.; Burley, S. K.; Fenyoe, D.; Chait, B. T.;
Muir, T. W. J. Am. Chem. Soc. 2003, 125, 2416–2425
(21) Hurst, G. B.; Lankford, T. K.; Kennel, S. J. J. Am. Soc. Mass Spectrom. 2004,
15, 832–839
(22) Sinz, A.; Kalkhof, S.; Ihling, C. J. Am. Soc. Mass Spectrom. 2005, 16, 1921–
1931
(23) Back, J. W.; Hartog, A. F.; Dekker, H. L.; Muijsers, A. O.; de Koning, L. J.;
de Jong, L. J. Am. Soc. Mass Spectrom. 2001, 12, 222–227
(24) Tang, X.; Munske, G. R.; Siems, W. F.; Bruce, J. E. Anal. Chem. 2005, 77,
311–318
(25) Chowdhury, S. M.; Munske, G. R.; Tang, X.; Bruce, J. E. Anal. Chem. 2006,
78, 8183–8193
(26) Schilling, B.; Row, R. H.; Gibson, B. W.; Guo, X.; Young, M. M. J. Am. Soc.
Mass Spectrom. 2003, 14, 834–850
(27) Gao, Q.; Xue, S.; Doneanu, C. E.; Shaffer, S. A.; Goodlett, D. R.; Nelson,
S. D. Anal. Chem. 2006, 78, 2145–2149
(28) Chen, T.; Jaffe, J. D.; Church, G. M. J. Comput. Biol. 2001, 8, 571–583
(29) Tang, Y.; Chen, Y.; Lichti, C. F.; Hall, R. A.; Raney, K. D.; Jennings, S. F.
BMC Bioinformatics 2005, 6, S9
.
.
.
.
.
.
.
(33) Soderblom, E. J.; Bobay, B. G.; Cavanagh, J.; Goshe, M. B. Rapid Commun.
.
Mass Spectrom. 2007, 21, 3395–3408
(34) Soderblom, E. J.; Goshe, M. B. Anal. Chem. 2006, 78, 8059–8068
(35) Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W.
Anal. Chem. 1994, 66, 2809–2815
(36) Payne, A. H.; Glish, G. L. Anal. Chem. 2001, 73, 3542–3548
(37) Flora, J. W.; Muddiman, D. C. Anal. Chem. 2001, 73, 3305–3311
(38) Flora, J. W.; Muddiman, D. C. J. Am. Chem. Soc. 2002, 124, 6546–6547
(39) Crowe, M. C.; Brodbelt, J. S. J. Am. Soc. Mass Spectrom. 2004, 15, 1581–
1592
(40) Crowe, M. C.; Brodbelt, J. S. Anal. Chem. 2005, 77, 5726–5734
(41) Flora, J. W.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2004, 15, 121–
127
(42) Colorado, A.; Shen, J. X.; Brodbelt, J. Anal. Chem. 1996, 68, 4033–4043
(43) Gabryelski, W.; Li, L. Rapid Commun. Mass Spectrom. 2002, 16, 1805–
1811
(44) Goolsby, B. J.; Brodbelt, J. S. Anal. Chem. 2001, 73, 1270–1276
(45) Hashimoto, Y.; Hasegawa, H.; Waki, I. Rapid Commun. Mass Spectrom.
2004, 18, 2255–2259
(46) Stephenson, L., Jr.; Booth, M. M.; Shalosky, J. A.; Eyler, J. R.; Yost, R. A.
J. Am. Soc. Mass Spectrom. 1994, 5, 886–893
(47) Wilson, J. J.; Brodbelt, J. S. Anal. Chem. 2006, 78, 6855–6862
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(30) de Koning, L. J.; Kasper, P. T.; Back, J. W.; Nessen, M. A.; Vanrobaeys, F.;
.
Van Beeumen, J.; Gherardi, E.; de Koster, C. G.; de Jong, L. FEBS J. 2006,
.
273, 281–291
(31) Seebacher, J.; Mallick, P.; Zhang, N.; Eddes, J. S.; Aebersold, R.; Gelb, M. H.
J. Proteome Res. 2006, 5, 2270–2282
(32) Gardner, M. W.; Brodbelt, J. S. J. Am. Soc. Mass Spectrom. 2008, 19, 344–
357
.
.
.
.
.
.
4808 Analytical Chemistry, Vol. 80, No. 13, July 1, 2008