1034
S. Sengmany et al.
LETTER
nated product (when a primary amine is employed) could
also be established upon analysis of the reaction mixture.
Acknowledgment
The authors thank Dr. Jacques Royer (University Paris 5, France)
and Pr. Lothar Wilhelm Bieber (Pernambuco University, Brazil) for
helpful discussions.
We also realized an experiment using a mixture of (Z)-
and (E)-1-bromoprop-1-ene as starting compound (entry
9). Regarding the chemical structure of this substrate, we
chose to use the conditions analogous to those employed
for the three-component coupling of aryl bromides. In that
case, an almost quantitative reaction is observed, with no
significant sign of disparity between the reactivity of both
stereoisomers, a mixture of E and Z three-component cou-
pling products being detected in the reaction mixture.
However, we could observe some slight fluctuations in
the stereoisomeric ratio of coupling products, with respect
to reaction time and/or temperature. This might indicate
that a stereoisomer is slightly more reactive than the other.
A further supplementary survey involving pure stereoiso-
mers could provide more indications about this observa-
tion.
References and Notes
(1) For recent reviews, see: (a) Guillena, G.; Ramon, D. J.; Yus,
M. Tetrahedron: Asymmetry 2007, 18, 693. (b) Dömling,
A. Chem. Rev. 2006, 106, 17. (c) Simon, C.; Constantieux,
T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957. (d) Zhu, J.
Eur. J. Org. Chem. 2003, 1133. (e) Dömling, A.; Ugi, I.
Angew. Chem. Int. Ed. 2000, 39, 3168. (f) Ramón, D. J.;
Yus, M. Angew. Chem. Int. Ed. 2000, 44, 1602.
(2) (a) Arend, M.; Westermann, B.; Risch, N. Angew. Chem. Int.
Ed. 1998, 37, 1044. (b) Heaney, H. In Comprehensive
Organic Synthesis, Vol. 2; Trost, B. M.; Fleming, I., Eds.;
Pergamon Press: Oxford, 1991, 953–973. (c) Overman, L.
E.; Ricca, D. J. In Comprehensive Organic Synthesis, Vol. 2;
Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford,
1991, 1007–1046.
During the course of our preliminary investigation, we no-
ticed that the reaction cannot be conducted in acetonitrile
starting from allyl bromide which reacts vigorously fol-
lowing an exothermic reaction leading to the production
of volatile material, probably by a Würtz-like dimeriza-
tion of allyl bromide. Interestingly, allyl chloride reacts
smoother than allyl bromide, under thermal assistance and
in the additional presence of DMF and Bu4NI (entry 8).15
Under the experimental conditions described by Fan and
co-workers,8 allyl bromide was efficient in such cou-
plings, conducted in THF at room temperature for several
hours (typically 12–24 h). If one considers that our proce-
dure involving acetonitrile as the solvent leads generally
to exothermic reactions which are completed in less than
one hour and that, in addition, zinc-mediated chemical
syntheses of arylzinc compounds cannot be conducted in
THF solutions instead of acetonitrile,13 it appears that the
nature of the solvent has a great influence over the reac-
tion rate and that THF globally slows down the above-
mentioned processes compared to acetonitrile. In order to
define the reasons for which the solvent is of so crucial
importance, we envisage to implement a further mecha-
nistic investigation focused on transient organometallic
species by means of in situ ReactIR measurements and
electroanalytical investigations, which have already pro-
vided conclusive results on related systems.16
(3) (a) Westermann, B.; Neuhaus, C. Angew. Chem. Int. Ed.
2005, 44, 4077. (b) Kobayashi, S.; Matsubara, R.;
Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc.
2003, 125, 2507. (c) Mitsumori, S.; Zhang, H.; Cheong, P.
H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F. III J. Am.
Chem. Soc. 2006, 128, 1040. (d) Cordova, A.; Barbas, C. F.
III Tetrahedron Lett. 2002, 43, 7749. (e) Dhawan, R.;
Dghaym, R. D.; Arndtsen, B. A. J. Am. Chem. Soc. 2003,
125, 1474. (f) Nanda, K. K.; Trotter, B. W. Tetrahedron
Lett. 2005, 46, 2025.
(4) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew.
Chem. Int. Ed. 2004, 43, 1566. (b) Kobayashi, S.; Ishitani,
H.; Yamashita, Y.; Ueno, M.; Shimizu, H. Tetrahedron
2001, 57, 861. (c) List, B. J. Am. Chem. Soc. 2000, 122,
9336. (d) Cordova, A.; Watanabe, S.-i.; Tanaka, F.; Notz,
W.; Barbas, C. F. III J. Am. Chem. Soc. 2002, 124, 1866.
(e) Ollevier, T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292.
(5) (a) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am.
Chem. Soc. 2002, 124, 827. (b) Trost, B. M.; Terrell, L. R.
J. Am. Chem. Soc. 2003, 125, 338. (c) Yamaguchi, A.;
Matsunaga, S.; Shibasaki, M. Tetrahedron Lett. 2006, 47,
3985.
(6) (a) Desrosier, J.-N.; Côté, A.; Charette, A. B. Tetrahedron
2005, 61, 6186. (b) Côté, A.; Charette, A. B. J. Org. Chem.
2005, 70, 10864. (c) Porter, J. R.; Traverse, J. F.; Hoveyda,
A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 10409.
(d) Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H. Angew.
Chem. Int. Ed. 2003, 42, 4244.
(7) For recent examples of similar Mannich-type reactions
conducted in Barbier conditions, see: (a) Aschwanden, P.;
Stephenson, C. R. J.; Carreira, E. M. Org. Lett. 2006, 8,
2437. (b) Gommermann, N.; Knochel, P. Tetrahedron 2005,
61, 11418. (c) Estevam, I. H. S.; Bieber, L. W. Tetrahedron
Lett. 2003, 44, 667. (d) Wei, C.; Li, Z.; Li, C.-J. Org. Lett.
2003, 5, 4473. (e) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003,
125, 9584. (f) Sakaguchi, S.; Kubo, T.; Ishii, Y. Angew.
Chem. Int. Ed. 2001, 40, 2534. (g) Gommermann, N.;
Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed.
2003, 42, 5763. (h) Dube, H.; Gommermann, N.; Knochel,
P. Synthesis 2004, 2015. (i) Bieber, L. W.; Da Silva, M. F.
Tetrahedron Lett. 2004, 45, 8281.
In conclusion, the results reported in this preliminary
study prove that straightforward three-component reac-
tions between various organic halides, primary or second-
ary amines, and aldehyde derivatives can be conducted in
Barbier-like conditions. Consequently, we found a very
promising reaction system, able to provide a wide variety
of nitrogen-containing products under convenient reac-
tion conditions. Further developments, especially with
aryl bromides as starting compounds, are currently in
progress.
(8) Fan, R.; Pu, L.; Qin, L.; Wen, F.; Yao, G.; Wu, J. J. Org.
Chem. 2007, 72, 3149.
Synlett 2008, No. 7, 1031–1035 © Thieme Stuttgart · New York