10.1002/anie.201810502
Angewandte Chemie International Edition
[4]
a) H.-Y. Thu, W.-Y. Yu, C.-M. Che, J. Am. Chem. Soc. 2006, 128,
9048; b) Z. Li, D. A. Capretto, R. Rahaman, C. He, Angew. Chem. Int.
Ed. 2007, 46, 5184; Angew. Chem. 2007, 119, 5276; c) S. A. Reed, M.
C. White, J. Am. Chem. Soc. 2008, 130, 3316; d) S. A. Reed, A. R.
Mazzotti, M. C. White, J. Am. Chem. Soc. 2009, 131, 11701; e) G.
Yin, Y. Wu, G. Liu, J. Am. Chem. Soc. 2010, 132, 11978; f) J. Pan, M.
Su, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 8647; Angew.
Chem. 2011, 123, 8806; g) T. Kang, Y. Kim, D. Lee, Z. Wang, S.
Chang, J. Am. Chem. Soc. 2014, 136, 4141; h) H. Wang, G. Tang, X.
Li, Angew. Chem. Int. Ed. 2015, 54, 13049; Angew. Chem. 2015, 127,
13241; i) N. D. Chiappini, J. B. C. Mack, J. Du Bois, Angew. Chem.
Int. Ed. 2018, 57, 4956; Angew. Chem. 2018, 130, 5050; j) W. Zhou,
L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7094; Angew.
Chem. 2009, 121, 7228; k) H. J. Kim, J. Kim, S. H. Cho, S. Chang, J.
Am. Chem. Soc. 2011, 133, 16382.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: C(sp3)-H amination • internal oxidants • fluorine • synthetic
methods
[1]
a) A. Ricci, Amino Group Chemistry: From Synthesis to the life
Sciences, Wiley-VCH: Weinheim, 2008; b) E. Vitaku, D. T. Smith, J.
T. Njardarson, J. Med. Chem. 2014, 57, 10257.
[2] a) T. A. Ramirez, B. Zhao, Y. Shi, Chem. Soc. Rev. 2012, 41, 931; b) J.
L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911; c)
J. L. Jeffrey, R. Sarpong, Chem. Sci. 2013, 4, 4092; d) D. Hazelard,
P.-A. Nocquet, P. Compain, Org. Chem. Front. 2017, 4, 2500; e) Y.
Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247; f) B. Darses, R.
Rodrigues, L. Neuville, M. Mazurais, P. Dauban, Chem. Commun.
2017, 53, 493; g) Y. N. Timsina, B. F. Gupton, K. C. Ellis, ACS Catal.
2018, 8, 5732; h) P. Wang, L. Deng, Chin. J. Chem. 2018, DOI:
org/10.1002/cjoc.201800427.
[5] a) H. Huang, X. Ji, W. Wu, H. Jiang, Chem. Soc. Rev. 2015, 44, 1155;
b) X. Tang, W. Wu, W. Zeng, H. Jiang, Acc. Chem. Res. 2018, 51,
1092.
[6] a) J. He, T. Shigenari, J.-Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 6545;
Angew. Chem. 2015, 127, 6645; b) T. Xiong, Y. Li, Y. Lv, Q. Zhang,
Chem. Commun. 2010, 46, 6831; c) Z. Ni, Q. Zhang, T. Xiong, Y.
Zheng, Y. Li, H. Zhang, J. Zhang, Q. Liu, Angew. Chem. Int. Ed. 2012,
51, 1244; Angew. Chem. 2012, 124, 1270; d) Á. Iglesias, R. Álvarez,
Á. R. de Lera, K. Muñiz, Angew. Chem. Int. Ed. 2012, 51, 2225;
Angew. Chem. 2012, 124, 2268; e) S. Yu, G. Tang, Y. Li, X. Zhou, Y.
Lan, X. Li, Angew. Chem. Int. Ed. 2016, 55, 8696; Angew. Chem.
2016, 128, 8838; f) A. Wang, N. J. Venditto, J. W. Darcy, M. H.
Emmert, Organometallics 2017, 36, 1259; g) J. R. Clark, K. Feng, A.
Sookezian, M. C. White, Nat. Chem. 2018, 10, 583; h) C. Tang, M.
Zou, J. Liu, X. Wen, X. Sun, Y. Zhang, N. Jiao, Chem. Eur. J. 2016,
22, 11165.
[7] a) H. Lu, W. Subbarayan, J. Tao, X. P. Zhang, Organometallics 2010,
29, 389; b) X. Zhang, M. Wang, P. Li, L. Wang, Chem. Commun.
2014, 50, 8006; c) G. Pandey, R. Laha, Angew. Chem. Int. Ed. 2015,
54, 14875; Angew. Chem. 2015, 127, 15088; d) C. K. Prier, R. K.
Zhang, A. R. Buller, S. Brinkmann-Chen, F. H. Arnold, Nat. Chem.
2017, 9, 629.
[8] a) K. Muller, C. Faeh, F. Diederich, Science 2007, 317, 1881; b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320; c) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359; d)
T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
[9] a) Fluorinated Heterocyclic Compounds: Synthesis Chemistry, and
Applications (Ed.: V. A. Petrov), Wiley, Hoboken, 2009; b) J. Nie, H.-
C. Guo, D. Cahard, J.-A. Ma, Chem. Rev. 2011, 111, 455.
[10] a) C. Zhu, R. Zhu, H. Zeng, F. Chen, C. Liu, W. Wu, H. Jiang, Angew.
Chem. Int. Ed. 2017, 56, 13324; Angew. Chem. 2017, 129, 13509; b)
C. Zhu, P. Chen, W. Wan, C. Qi, Y. Ren, H. Jiang, Org. Lett. 2016, 18,
4008; c) C. Zhu, R. Zhu, P. Chen, F. Chen, W. Wu, H. Jiang, Adv.
Synth. Catal. 2017, 359, 3154.
[11] For aryldiazonium tetrafluoroborates as internal oxidants in C-H
activation via C-N2 bond cleavage: a) D. Kalyani, K. B. McMurtrey, S.
R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566; b)
K. Shin, S.-W. Park, S. Chang, J. Am. Chem. Soc. 2015, 137, 8584.
[12] CCDC 1863454 (3aa).
[3] a) K. J. Fraunhoffer, M. C. White, J. Am. Chem. Soc. 2007, 129, 7274; b)
G. T. Rice, M. C. White, J. Am. Chem. Soc. 2009, 131, 11707; c) J. J.
Neumann, S. Rakshit, T. Dröge, F. Glorius, Angew. Chem. Int. Ed.
2009, 48, 4892; Angew. Chem. 2009, 121, 7024; d) M. Ichinose, H.
Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida, T. Katsuki, Angew.
Chem. Int. Ed. 2011, 50, 9884; Angew. Chem. 2011, 123, 10058; e) M.
E. Harvey, D. G. Musaev, J. Du Bois, J. Am. Chem. Soc. 2011, 133,
17207; f) G. He, Y. Zhao, S. Zhang, C. Lu, G. Chen, J. Am. Chem.
Soc. 2012, 134, 3; g) E. T. Nadres, O. Daugulis, J. Am. Chem. Soc.
2012, 134, 7; h) S. M. Paradine, M. C. White, J. Am. Chem. Soc. 2012,
134, 2036; i) H. Lu, Y. Hu, H. Jiang, L. Wojtas, X. P. Zhang, Org.
Lett. 2012, 14, 5158; j) Y. Liu, X. Guan, E. L. Wong, P. Liu, J.-S.
Huang, C.-M. Che, J. Am. Chem. Soc. 2013, 135, 7194; k) J. W.
Rigoli, C. D. Weatherly, J. M. Alderson, B. T. Vo, J. M. Schomaker, J.
Am. Chem. Soc. 2013, 135, 17238; l) G. He, S. Zhang, W. A. Nack, Q.
Li, G. Chen, Angew. Chem. Int. Ed. 2013, 52, 11124; Angew. Chem.
2013, 125, 11330; m) A. McNally, B. Haffemayer, B. S. L. Collins, M.
J. Guant, Nature 2014, 510, 129; n) M. Yang, B. Su, Y. Wang, K.
Chen, X. Jiang, Y.-F. Zhang, X.-S. Zhang, G. Chen, Y. Cheng, Z. Cao,
Q.-Y. Guo, L. Wang, Z.-J. Shi, Nat. Commun. 2014, 5, 4707; o) H. Lu,
C. Li, H. Jiang, C. L. Lizardi, X. P. Zhang, Angew. Chem. Int. Ed.
2014, 53, 7028; Angew. Chem. 2014, 126, 7148; p) J. M. Alderson, A.
M. Phelps, R. J. Scamp, N. S. Dolan, J. M. Schomaker, J. Am. Chem.
Soc. 2014, 136, 16720; q) C. Wang, C. Chen, J. Zhang, J. Han, Q.
Wang, K. Guo, P. Liu, M. Guan, Y. Yao, Y. Zhao, Angew. Chem. Int.
Ed. 2014, 53, 9884; Angew. Chem. 2014, 126, 10042; r) X. Wu, K.
Yang, Y. Zhao, H. Sun, G. Li, H. Ge, Nat. Commun. 2015, 6, 6462; s)
A. P. Smalley, M. J. Gaunt, J. Am. Chem. Soc. 2015, 137, 10632; t) C.
Zhu, Y. Liang, X. Hong, H. Sun, W. Sun, K. N. Houk, Z. Shi, J. Am.
Chem. Soc. 2015, 137, 7564; u) S. M. Paradine, J. R. Griffin, J. Zhao,
A. L. Petronico, S. M. Miller, M. C. White, Nat. Chem. 2015, 7, 987;
v) O. Villanueva, N. M. Weldy, S. B. Blakey, C. E. MacBeth, Chem.
Sci. 2015, 6, 6672; w) E. A. Wappes, S. C. Fosu, T. C. Chopko, D. A.
Nagib, Angew. Chem. Int. Ed. 2016, 55, 9974; Angew. Chem. 2016,
128, 10128; x) H. Lu, K. Lang, H. Jiang, L. Wojtas, X. P. Zhang,
Chem. Sci. 2016, 7, 6934; y) I. T. Alt, C. Guttroff, B. Plietker, Angew.
Chem. Int. Ed. 2017, 56, 10582; Angew. Chem. 2017, 129, 10718; z)
B. Bagh, D. L. J. Broere, V. Sinhan, P. F. Kuijpers, N. P. van Leest, B.
de Bruin, S. Demeshko, M. A. Siegler, J. I. van der Vlugt, J. Am.
Chem. Soc. 2017, 139, 5117.
[13] N. Gauvry, J. Fruechtel, W. Schorderet, B. Sandra, J. A. Bouvier, A.-
G. S. Novatis, WO 2008074757, 2008.
[14] It takes 4 minutes before the NMR equipment starts to collect the data
of the sample. When the NMR equipment finished the data collection,
our reaction also finished.
[15] C. Zhu, H. Zeng, F. Chen, C. Liu, R. Zhu, W. Wu, H. Jiang, Org.
Chem. Front. 2018, 5, 571.
This article is protected by copyright. All rights reserved.