Organic Letters
Letter
(3) Bandichhor, R.; Nosse, B.; Reiser, O. Top. Curr. Chem. 2005, 243,
43.
(4) Park, B. K.; Nakagawa, M.; Hirota, A.; Nakayama, M. J. Antibiot.
1988, 41, 751.
(5) De Azevedo, M. B. M.; Murta, M. M.; Greene, A. E. J. Org. Chem.
1992, 57, 4567.
We then elected to apply our new method to the synthesis of
two bioactive paraconic acids. Initially we proposed desilylation
of a vinyl TMS adduct (e.g., 13g) and oxidation of an electron-
rich aromatic to a carboxylic acid with a RuO4/NaIO4 system.
However, this proved challenging as many conditions used to
desilylate the vinyl TMS resulted in unreacted E-isomer and
alkene isomerization of the desilylated Z-isomer. Furthermore,
the RuO4/NaIO4 system reacted preferentially with the α-
methylene moiety. These issues prompted us to consider β-
haloacrylic acids as reaction partners. Initial results with (E)-β-
chloroacrylic acid produced the desired adduct in low yields,
where substantial amounts of Michael addition byproduct with
thiophenol were obtained. However, the (Z)-isomer provided
the lactone in good yields and a 1.1:1 dr, while formation of the
uncyclized byproduct was suppressed (Scheme 2). Nevertheless,
treatment of the chloride isomers with mild basic conditions
afforded the desired paraconic acids as single diastereomers.
(6) (a) Braukmuller, S.; Bruckner, R. Eur. J. Org. Chem. 2006, 2110.
̈
̈
(b) Blanc, D.; Madec, J.; Popowyck, F.; Ayad, T.; Phansavath, P.;
Ratovelomanana-Vidal, V.; Genet, J.-P. Adv. Synth. Catal. 2007, 349,
̂
943. (c) Hajra, S.; Karmakar, A.; Giri, A.; Hazra, S. Tetrahedron Lett.
2008, 49, 3625. (d) Ghosh, M.; Bose, S.; Maity, S.; Ghosh, S.
Tetrahedron Lett. 2009, 50, 7102. (e) Jongkoi, R.; Choommongkol, R.;
Tarnchompoo, B.; Nimmanpipug, P.; Meepowpan, P. Tetrahedron
2009, 65, 6382. (f) Fernandes, R. A.; Chowdhury, A. K. Tetrahedron:
Asymmetry 2011, 22, 1114.
(7) (a) Brisdelli, F.; Perilli, M.; Sellitri, D.; Piovano, M.; Garbarino, J.
A.; Nicoletti, M.; Bozzi, A.; Amicosante, G.; Celenza, G. Phytother. Res.
2012, 27, 431. (b) Goel, M.; Dureja, P.; Rani, A.; Uniyal, P. L.; Laatsch,
H. J. Agric. Food Chem. 2011, 59, 2299.
(8) Kumar KC, S.; Muller, K. J. Nat. Prod. 1999, 62, 817.
̈
(9) For representative enantioselective syntheses, see: (a) Saha, S.;
Roy, S. C. Tetrahedron 2010, 66, 4278. (b) Chhor, R. B.; Nosse, B.;
Sorgel, S.; Bohm, C.; Seitz, M.; Reiser, O. Chem.Eur. J. 2003, 9, 260.
Scheme 2. Synthesis of Methylenolactocin and
Protolichesterinic Acid
̈
̈
(10) For selected recent examples of catalytic γ-butyrolactone
synthesis, see: (a) McInturff, E. L.; Mowat, J.; Waldeck, A. R.;
Krische, M. J. J. Am. Chem. Soc. 2013, 135, 17230. (b) Montgomery, T.
P.; Hassan, A.; Park, B. Y.; Krische, M. J. J. Am. Chem. Soc. 2012, 134,
11100. (c) Steward, K. M.; Corbett, M. T.; Goodman, G.; Johnson, J. S.
J. Am. Chem. Soc. 2012, 134, 20197. (d) Steward, K. M.; Gentry, E. C.;
Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 7329.
(11) (a) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006,
2418. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 14370−14371.
In summary, our method provides a modular approach to the
synthesis of γ-butyrolactones from a variety of simple, often
commercially available, oxidizable olefins and unsaturated acids.
Perhaps most importantly, this method could be utilized to
rapidly generate libraries of unique γ-butyrolactone structures for
biological testing. A highly diastereoselective synthesis of two
important α-methylene paraconic acids, methylenolactocin and
protolichesterinic acid, was accomplished. Enantioselective
variants of this PRCC reaction are the focus of current research
efforts.
̈
(12) (a) Ohler, E.; Reininger, K.; Schmidt, U. Angew. Chem., Int. Ed.
1970, 9, 457. (b) Loffler, A.; Pratt, R. J.; Ruesch, H. P.; Dreiding, A. S.
̈
̈
Helv. Chim. Acta 1970, 53, 383.
(13) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
(14) (a) Lu, X.; Zhu, G.; Wang, Z. Synlett 1998, 115−121. (b) Zhu, G.;
Zhang, Z. J. Org. Chem. 2005, 70, 3339. (c) Lu, X.; Zhu, G.; Wang, Z.;
Ma, S.; Ji, J.; Zhang, Z. Pure Appl. Chem. 1997, 69, 553.
(15) (a) Masuyama, Y.; Nimura, Y.; Kurusu, Y. Tetrahedron Lett. 1991,
32, 225. (b) Tamaru, Y.; Hojo, M.; Yoshida, Z. J. Org. Chem. 1991, 56,
1099.
(16) Recently, Wu and co-workers have reported a direct synthesis of
γ-butyrolactones using an iridium photoredox catalyst, oxidizing α-
bromoesters for radical addition to alkenes: (a) Wei, X.-J.; Yang, D.-T.;
Wang, L.; Song, T.; Wu, L.-Z.; Liu, Q. Org. Lett. 2013, 15, 6054. For an
electrochemical method, see: (b) Shono, T.; Ohmizu, H.; Kawakami, S.;
Sugiyama, H. Tetrahedron Lett. 1980, 21, 5029.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectral data. This material is
■
S
(17) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.;
Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
AUTHOR INFORMATION
Corresponding Author
■
(18) Nguyen, T. M.; Nicewicz, D. A. ACS Catal. 2014, 4, 355.
(19) (a) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577. (b) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci.
2013, 4, 3160. (c) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc.
2013, 135, 9588. (d) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A.
Angew. Chem., Int. Ed. 2014, 53, 6198. (e) Wilger, D. J.; Grandjean, J.-M.
M.; Lammert, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720.
(f) Grandjean, J.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2013, 52, 3967.
(g) Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 10334.
(20) Clive, D. L. J.; Beaulieu, P. L. J. Chem. Soc., Chem. Commun. 1983,
307.
Author Contributions
†These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The project described was supported by the David and Lucile
Packard Foundation.
■
(21) Bordwell, F. G.; Zhang, X.-M.; Satish, A. V.; Cheng, J. P. J. Am.
Chem. Soc. 1994, 116, 6605.
(22) Singer, L. A.; Kong, N. P. Tetrahedron Lett. 1966, 19, 2089.
(23) Shimada, S.; Hashimoto, Y.; Saigo, K. J. Org. Chem. 1993, 58,
5226.
REFERENCES
■
(1) (a) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem.,
Int. Ed. 2009, 48, 9426. (b) Seitz, M.; Reiser, O. Curr. Opin. Chem. Bio.
2005, 9, 285.
(2) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.
4813
dx.doi.org/10.1021/ol5022993 | Org. Lett. 2014, 16, 4810−4813