10.1002/cbic.201900614
ChemBioChem
COMMUNICATION
suggest the compatibility of cyclic sulfite diesters with cellular
nucleophiles. Lastly, a cell viability assay conducted with human
cervical cancer cells (HeLa) revealed SO2 donors 17 and 13 were
not significant inhibitors of proliferation at 100 μM (see Supporting
Information, Figures S3 and S4). Thus, the SO2 donor 17 might
find convenient use for studying cellular responses to enhanced
reactive sulfur species.
support. SM and KAP acknowledge research fellowships from
Council for Scientific and Industrial Research (CSIR) and
University Grants Commission (UGC), respectively.
Keywords: Sulfur dioxide, Cyclic sulphite ester, Reactive sulfur
species, sulfite
[1]
[2]
a) M. H. Stipanuk, Annu. Rev. Nutr. 1986, 6, 179-209; b) T. P. Singer,
E. B. Kearney, Arch. Biochem. Biophys. 1956, 61, 397-409; c) W.
Wang, B. Wang, Front. Chem. 2018, 6; dP. Bora, P. Chauhan, K. A.
Pardeshi, H. Chakrapani, RSC Adv. 2018, 8, 27359-27374.
a) Y. Zhao, T. D. Biggs, M. Xian, Chem. Commun. 2014, 50, 11788-
11805; b)K. Shatalin, E. Shatalina, A. Mironov, E. Nudler, Science
2011, 334, 986-990.
[3]
[4]
a) Z. Meng, G. Qin, B. Zhang, J. Bai, Mutagenesis 2004, 19, 465-
468; b) W. Dröge, Phys. Rev., 82, 47-95.
a) L. A. Komarnisky, R. J. Christopherson, T. K. Basu, Nutrition 2003,
19, 54-61; b) C. S. Ough, E. A. Crowell, J. Food Sci. 1987, 52, 386-
388.
[5]
a) A. F. Gunnison, Food and Cosmetics Toxicology 1981, 19, 667-
682; b) E. Rencüzoǧullari, H. B. İla, A. Kayraldiz, M. Topaktaş, Mutat.
Res. 2001, 490, 107-112; c) X. Shi, J. Inorg. Biochem. 1994, 56,
155-165.
[6]
[7]
[8]
a) P. Bisseret, N. Blanchard, Org. Biomol. Chem. 2013, 11, 5393-
5398; b) E. J. Emmett, M. C. Willis, Asian J.Org. Chem. 2015, 4,
602-611.
a) H. Niknahad, P. J. O’Brien, Chem. Biol. Interact. 2008, 174, 147-
154; b) Z. Meng, Y. Li, J. Li, Arch. Biochem. Biophys. 2007, 467,
291-296.
a) S. R. Malwal, D. Sriram, P. Yogeeswari, V. B. Konkimalla, H.
Chakrapani, J. Med. Chem. 2012, 55, 553-557; b) S. R. Malwal, D.
Sriram, P. Yogeeswari, H. Chakrapani, Bioorg. Med. Chem. Lett.
2012, 22, 3603-3606; c) S. R. Malwal, M. Gudem, A. Hazra, H.
Chakrapani, Org. Lett. 2013, 15, 1116-1119; d) S. R. Malwal, H.
Chakrapani, Org. Biomol. Chem. 2015, 13, 2399-2406; e) K. A.
Pardeshi, S. R. Malwal, A. Banerjee, S. Lahiri, R. Rangarajan, H.
Chakrapani, Bioorg. Med. Chem. Lett. 2015, 25, 2694-2697; f) K. A.
Pardeshi, G. Ravikumar, H. Chakrapani, Org. Lett. 2018, 20, 4-7.
a) M. J. Pena-Egido, B. Garcia-Alonso, C. Garcia-Moreno, J. Agric.
Food Chem. 2005, 53, 4198-4152; b) B. Garcia-Alonso, M. J. Pena-
Egido, C. Garcia-Moreno, J. Agric. Food Chem. 2001, 49, 423-429;
c) D. Liu, H. Jin, C. Tang, J. Du, Mini Rev. Med. Chem. 2010, 10,
1039-1045.
Figure 4. Live cell imaging carried out with DLD-1 cells (A) cells incubated with
probe 23 (10 μM) from the green channel; (B) imaging of (A) from the red
channel; (C) overlay of (A) and (B); (D) fluorescence imaging of cells incubated
with probe 23 (10 μM) for 30 min, and further incubated with 17 (20 μM) for 30
min from the green channel; (E) fluorescence imaging of (D) from the red
channel; (F) overlap of (D) and (E); (G) fluorescence imaging of cells incubated
with probe 23 (10 μM) for 30 min, and further incubated with NaHSO3 (200 μM)
for 30 min from the green channel; (G) imaging of (F) from the red channel; (I)
overlay of (G) and (H); Scale bar: 100 μm.
[9]
[10]
[11]
R. Kodama, K. Sumaru, K. Morishita, T. Kanamori, K. Hyodo, T.
Kamitanaka, M. Morimoto, S. Yokojima, S. Nakamura, K. Uchida,
Chem. Commun. 2015, 51, 1736-1738.
J. J. Day, Z. Yang, W. Chen, A. Pacheco, M. Xian, ACS Chem. Biol.
2016, 11, 1647-1651.
W. Wang, B. Wang, Chem. Commun. 2017, 53, 10124-10127.
K. A. Pardeshi, T. A. Kumar, G. Ravikumar, M. Shukla, G. Kaul, S.
Chopra, H. Chakrapani, Bioconjugate Chem. 2019, 30, 751-759.
B. Roy, M. Kundu, A. K. Singh, T. Singha, S. Bhattacharya, P. K.
Datta, M. Mandal, N. D. P. Singh, Chem. Commun. 2019, 55,
13140-13143.
Y. Venkatesh, K. S. Kiran, S. S. Shah, A. Chaudhuri, S. Dey, N. D.
P. Singh, Org. Biomol. Chem. 2019, 17, 2640-2645.
G. Fakha, D. Sinou, Molecules 2005, 10, 859-870.
Z. Behzad, B. Tarifeh, Bull. Chem. Soc. Jpn. 2005, 78, 307-315.
a) A. J. Williams, S. Chakthong, D. Gray, R. M. Lawrence, T.
Gallagher, Org. Lett. 2003, 5, 811-814; b) R. Peters, D. F. Fischer,
Org. Lett. 2005, 7, 4137-4140.
D. F. Shellhamer, D. T. Anstine, K. M. Gallego, B. R. Ganesh, A. A.
Hanson, K. A. Hanson, R. D. Henderson, J. M. Prince, V. L. Heasley,
J. Chem. Soc., Perkin Trans. 2 1995, 861-866.
C. A. Bunton, P. B. D. de la Mare, P. M. Greaseley, D. R. Llewellyn,
N. H. Pratt, J. G. Tillett, J. Chem. Soc. 1958, 4751-4754.
aK. Nymann, L. Jensen, J. S. Svendsen, Acta Chem. Scand. 1996,
50, 832-841; bK. Nymann, J. S. Svendsen, Acta Chem. Scand. 1994,
48, 183-186.
H. K. Garner, H. J. Lucas, J. Am. Chem. Soc. 1950, 72, 5497-5501.
a) W. Chen, Q. Fang, D. Yang, H. Zhang, X. Song, J. Foley, Anal.
Chem. 2014, 87, 609-616; b) Y. Sun, D. Zhao, S. Fan, L. Duan, R.
Li, J. Agric. Food Chem. 2014, 62, 3405-3409; c) Y.-Q. Sun, J. Liu,
J. Zhang, T. Yang, W. Guo, Chem. Commun. 2013, 49, 2637-2639;
d) C. Wang, S. Feng, L. Wu, S. Yan, C. Zhong, P. Guo, R. Huang,
X. Weng, X. Zhou, Sensors Actuators B: Chem. 2014, 190, 792-799;
e) M.-Y. Wu, K. Li, C.-Y. Li, J.-T. Hou, X.-Q. Yu, Chem. Commun.
2014, 50, 183-185.
Conclusions
[12]
[13]
In summary, we report a series of 1,2-cyclic sulfite diesters that:
can be easily synthesized; are stable at room temperature; have
tunable SO2 release profiles; and are well suited to study effects
of enhanced intracellular levels of SO2 and duration of exposure
to this reactive species. Together, we present superior
alternatives to inorganic sulfites, the most commonly used SO2
donors. These compounds are easy to prepare and store and
readily dissociate to produce SO2. Due to the fundamental
importance of redox regulation in cellular growth and survival,
perturbation of redox homeostasis has emerged as a possible
mechanism for the development of new therapeutics.[24] Thus,
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
reliably generating reactive oxygen,[25] nitrogen[26] and sulfur
8b, 8e]
species[8a,
may have a range of applications including
developing small molecule-based inhibitors of against bacteria
[22]
[23]
25e]
such as Staphylococcus aureus,[8e,
Mycobacterium
tuberculosis[8a, 8b, 25a, 25b] as well as cancer.[27]
Acknowledgments
The authors thank IISER Pune and the Department of
Biotechnology, Ministry of Science and Technology, India (DBT);
Grant Number: BT/PR6798/MED/29/636/2012 for financial
This article is protected by copyright. All rights reserved.