J. Jia et al. / Tetrahedron Letters 49 (2008) 4621–4623
4623
0.020
0.015
0.010
0.005
0.000
tion of
6
andꢀ
7 = 4
(LGꢀ PhOꢀ), and NMR spectra for
(LGꢀ ¼ PhCH2CO2 , PhOꢀ), 6, and 7 (LGꢀ ¼ PhCH2COꢀ2 , PhOꢀ). Sup-
plementary data associated with this article can be found, in the
0.020
0.015
0.010
0.005
0.000
References and notes
2000 4000 6000 8000 10000
time (ns)
1. Ogata, Y.; Takagi, K.; Ishino, I.. J. Org. Chem. 1971, 36, 3975–3979.
2. Cleveland, P. G.; Chapman, O. L. Chem. Commun. 1967, 1064–1065.
3. (a) Campbell, A. L.; Lenz, G. R. Synthesis 1987, 421–452; (b) Lenz, G. R. Synthesis
1978, 489–518.
4. Ninomiya, I.; Naito, T. Heterocycles 1981, 15, 1433–1462.
5. Kanaoka, Y.; Itoh, K.; Hatanaka, Y.; Flippen, J. L.; Karle, I. L.; Witkop, B. J. Org.
Chem. 1975, 40, 3001–3003.
6. (a) Ma, C.; Steinmetz, M. G.; Cheng, Q.; Jayaraman, V. Org. Lett. 2003, 5, 71–74;
(b) Ma, C.; Steinmetz, M. G.; Kopatz, E. J.; Rathore, R. Tetrahedron Lett. 2005, 46,
1045–1048; (c) Ma, C.; Steinmetz, M. G.; Kopatz, E. J.; Rathore, R. J. Org. Chem.
2005, 70, 4431–4442.
7. (a) Ma, C.; Steinmetz, M. G. Org. Lett. 2004, 6, 629–632; (b) Chen, Y.; Steinmetz,
M. G. J. Org. Chem. 2006, 71, 6053–6060.
400
450
500
550
600
650
700
Wavelength (nm)
8. (a) Methods in Enzymology; Marriot, G., Ed.; Academic Press: San Diego, 1998;
Vol. 291, (b) Dynamic Studies in Biology; Goeldner, M., Givens, R., Eds.; Wiley-
VCH: Weinheim, 2005; (c) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45,
4900–4921.
Figure 2. Transient triplet absorption spectrum produced upon laser flash photol-
ysis of 2.5 mM 1c in 50% aq CH3CN containing 0.1 M phosphate buffer following
10 ns laser excitation at 355 nm. The spectral bands at 500 nm, 580 nm, and 670 nm
9. Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441–458.
10. (a) Luebke, K. L.; Balog, R. P.; Mittelman, D.; Garner, H. R. ACS Symp. Ser. 2002,
815, 87–106; (b) Nuwaysir, E. F.; Huang, W.; Albert, T. J.; Singh, J.; Nuwaysir, K.;
Pitas, A.; Richmond, T.; Gorski, T.; Berg, J. P.; Ballin, J.; McCormick, M.; Norton,
J.; Pollock, T.; Sumwalt, T.; Butcher, L.; Porter, D.; Molla, M.; Hall, C.; Blattner,
F.; Sussman, M. R.; Wallace, R. L.; Cerrina, F.; Green, R. D. Genome Res. 2002, 12,
1749–1755.
showed identical decay lifetimes (s = 335 ns).
nate strongly quench a transient absorption (Fig. 2) attributable to
the triplet excited state.16 Such quenching, which likely involves
energy transfer, occurs at close to diffusion controlled rate, with
a bimolecular rate constant of kq = 3.77 ꢁ 109 Mꢀ1 sꢀ1, according
to the linear Stern–Volmer plot. We therefore conclude that the
photochemistry of 1b and 4 derives from the singlet excited state.
Although the triplet excited state is observed in the laser flash
photolyses, its triplet yield is not especially high, as energy transfer
to effect trans-cis isomerization of 0.15 M trans-piperylene17 gives
Uisc = 0.20 in benzene and 0.15 in 10% aq CH3CN, while the reaction
of 1b is unquenched by the piperylene such that
In conclusion, methacrylanilides with allylic leaving groups
photolytically release phenylacetic acid and phenol to form an
methylene lactam in aqueous buffer with a quantum yield of ca.
0.06–0.07. The minor product is a lactam which retains the leaving
group, and the elimination from the postulated intermediate, zwit-
terion 5, effectively competes with the formation of the minor lac-
tam. The overall quantum yield for the reaction is governed by the
efficiency for the singlet excited state electrocyclic ring closure
step.
11. (a) According to a previous report,11b para-substituted derivatives 1b are
capable of overcoming
a strongly adverse polar solvent effect on the
photochemistry to give high yields of lactams as photoproducts, whereas
1a,1 which lacks the para-benzoyl group, was photochemically unreactive in
polar or protic solvents such as CH3CN or alcohols.; (b) Nishio, T.; Tabata, M.;
Koyama, H.; Sakamoto, M. Helv. Chim. Acta 2005, 88, 78–86.
12. The spectral data for 6 were as follows: 1H NMR (CDCl3) d 3.44 (s, 3H), 3.78 (s,
2H), 5.53 (s, 1H), 6.19(s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.58
(t, J = 8.0 Hz 1H), 7.68–7.76 (m, 4H); 13C NMR (CDCl3) 30.3, 34.2, 114.1, 124.0,
124.3, 128.5, 129.5, 129.9, 130.6, 132.0, 132.4, 135.2, 137.9, 143.5, 165.1, 195.6.
When stored as a solid, compound 6 slowly reacts in the dark to give unknown
products which show broad peaks in the 1H NMR spectrum. The ‘dark’ reaction
substantially slows when 6 is stored as a dilute solution in 50% buffer in
CH3CN.
U (3b) = 0.10.
a
-
13. Pure lactam 7 ðLGꢀ ¼ PhCH2CO2ꢀÞ, mp 77–79 °C, was obtained by acylating
lactam 7 (LGꢀ = HOꢀ), produced upon photolysis of 4 (LGꢀ = HOꢀ) in benzene,
followed by chromatographic separation from
unreacted starting material. The spectral data for
a
small amount of
7
6 and
(LGꢀ = HOꢀ) were as
follows: 1H NMR (CDCl3) d 2.68–2.85 (m, 3H), 3.33 (s, 3H), 3.55 (s, 2H), 4.28
(dd, J = 5.20, 8.40 Hz, 1H), 4.50 (dd, J = 3.33, 8.40 Hz, 1H), 6.96 (d, J = 6.33 Hz,
1H), 7.12–7.24 (m, 5H), 7.43 (t, J = 5.52 Hz, 2H), 7.54 (t, J = 5.56 Hz, 2H), 7.69
(m, 2H); 13C NMR (CDCl3) 28.3, 30.1, 40.0, 41.4, 63.5, 114.4, 124.9, 127.4, 128.6,
128.8, 129.5, 130.0, 130.2, 130.8, 132.3, 132.5, 134.0, 138.0, 143.8, 169.7, 171.6,
195.6.
14. Chromatography of the photolysate on silica gel eluting with 10% ethyl acetate
in hexane gave NMR pure 7 (LGꢀ = PhOꢀ) as a colorless oil. The spectral data
were as follows: 1H NMR (CDCl3) d 2.99–3.12 (m, 2H), 3.26 (dd, J = 11.6,
21.3 Hz, 1H ), 3.44 (s, 3H), 4.19 (dd, J = 7.6, 9.6 Hz, 1H ), 4.50 (dd, J = 3.7, 9.6 Hz,
1H), 6.95 (m, 3H), 7.07 (d,J = 8.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.50 (t,
J = 8.0 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.75–7.79 (m, 4H); 13C NMR (CDCl3) 28.8,
30.2, 40.6, 66.8, 114.3, 114.8, 121.3, 125.4, 128.5, 129.7, 130.0, 130.3, 130.7,
132.3, 132.5, 138.0, 144.0, 158.8, 170.2, 195.7.
15. Allen, N. S.; Salleh, N. G.; Edge, M.; Corrales, T.; Shah, M.; Weddell, I.; Catalina,
F.; Green, A. J. Photochem. Photobiol. A: Chem. 1996, 99, 191–196.
16. (a) The 500 nm maximum of the transient is similar to that of Michler’s
ketone.16b,c; (b) Brown, R. G.; Porter, G. Faraday Trans. 1 1977, 73, 1569–1573;
(c) Barnabas, M. V.; Liu, A.; Trifunac, A. D.; Krongauz, V. V.; Chang, C. T. J. Phys.
Chem. 1992, 96, 212–217.
Acknowledgments
We thank Ms. Ja Eun Lee and Dr. Yugang Chen for technical
assistance. Acknowledgment is made to the donors of the Petro-
leum Research Fund, administered by the American Chemical Soci-
ety (M.G.S.) and to the National Science Foundation for a Career
Award (R.R.) for support of this research.
Supplementary data
17. (a) Lamola, A. A.; Hammond, G. S. J. Chem. Phys. 1965, 43, 2129–2135; (b)
Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd ed.;
Marcel Dekker: New York, 1993; pp 310–312.
Detailed experimental procedures for ꢀthe synthesis of
4
(LGꢀ ¼ PhCH2CO2ꢀ, PhOꢀ), synthesis of 7 ðLG ¼ PhCH2COꢀ2 Þ, isola-