J.B. Park / Phytomedicine 18 (2011) 843–847
847
Fig. 5. The protection of hydrogen-peroxide induced DNA condensation by becatamide. Chromatin condensation was measured using Nuclear-IDTM Green Chromatin
Condensation Detection Kit (normal chromatin in the left and chromatin condensation in the right). Chromatin condensation was evident in cells treated with H2O2 (200 M)
for 24 h (B) compared to control untreated PC-12 cells (A). In PC-12 cells pre-treated with becatamide (C), chromatin condensation was significantly attenuated (P < 0.05)
compared to that in H2O2 only-treated cells (B).
caspase-9 activation, probably via protecting mitochondrial mem-
brane integrity from H2O2-induced damage.
Mena, S., Ortega, A., Estrela, J.M., 2009. Oxidative stress in environmental-induced
carcinogenesis. Mutat. Res. 674, 36–44.
Nakamura, T., Lipton, S.A., 2009. Cell death: protein misfolding and neurodegener-
ative diseases. Apoptosis 14, 455–468.
References
Park, J.B., 2005a. N-coumaroyldopamine and N-caffeoyldopamine increase cAMP via
beta 2-adrenoceptors in myelocytic U937 cells. FASEB J. 19, 497–502.
Park, J.B., 2005b. Quantitation of clovamide-type phenylpropenoic acid amides in
cells and plasma using high-performance liquid chromatography with a coulo-
metric electrochemical detector. J. Agric. Food Chem. 53, 8135–8140.
Park, J.B., 2009. Isolation and characterization of N-feruloyltyramine as the P-selectin
expression suppressor from garlic (Allium sativum). J. Agric. Food Chem. 57,
8868–8872.
Ramassamy, C., 2006. Emerging role of polyphenolic compounds in the treatment
of neurodegenerative diseases: a review of their intracellular targets. Eur. J.
Pharmacol. 545, 51–64.
Reeve, A.K., Krishnan, K.J., Turnbull, D., 2008. Mitochondrial DNA mutations in dis-
ease, aging, and neurodegeneration. Ann. N. Y. Acad. Sci. 1147, 21–29.
Ribe, E.M., Serrano-Saiz, E., Akpan, N., Troy, C.M., 2008. Mechanisms of neu-
ronal death in disease: defining the models and the players. Biochem. J 415,
165–182.
Al-Rehaily, A.J., Al-Howiriny, T.A., Ahmad, M.S., Al-Yahya, M.A., El-Feraly, F.S., Huf-
ford, C.D., McPhail, A.T., 2001. Alkaloids from Haplophyllum tuberculatum.
Phytochemistry 57, 597–602.
Alnemri, E.S., 1997. Mammalian cell death proteases: a family of highly conserved
aspartate specific cysteine proteases. J. Cell. Biochem. 64, 33–42.
Bates, G., 2003. Huntingtin aggregation and toxicity in Huntington’s disease. Lancet
361, 1642–1644.
Candé, C., Cecconi, F., Dessen, P., Kroemer, G., 2002. Apoptosis-inducing factor (AIF):
key to the conserved caspase-independent pathways of cell death? J. Cell Sci.
115, 4727–4734.
Caroppi, P., Sinibaldi, F., Fiorucci, L., Santucci, R., 2009. Apoptosis and human dis-
eases: mitochondrion damage and lethal role of released cytochrome C as
proapoptotic protein. Curr. Med. Chem. 16, 4058–4065.
Chou, S.C., Su, C.R., Ku, Y.C., Wu, T.S., 2009. The constituents and their bioactivities
of Houttuynia cordata. Chem. Pharm. Bull. (Tokyo) 57, 1227–1230.
Cutler, R.G., Plummer, J., Chowdhury, K., Heward, C., 2005. Oxidative stress profiling:
theory, technology, and practice. Ann. N. Y. Acad. Sci. 1055, 136–158.
Du, H., Yan, S.S., 2010. Mitochondrial medicine for neurodegenerative diseases. Int.
J. Biochem. Cell Biol. 42, 560–572.
Duyckaerts, C., Delatour, B., Potier, M.C., 2009. Classification and basic pathology of
Alzheimer disease. Acta Neuropathol. 118, 5–36.
Garrido, C., Galluzzi, L., Brunet, M., Puig, P.E., Didelot, C., Kroemer, G., 2006. Mech-
anisms of cytochrome c release from mitochondria. Cell Death Differ. 13,
1423–1433.
Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., Gage, F.H., 2010. Mechanisms under-
lying inflammation in neurodegeneration. Cell 140, 918–934.
Jourdain, A., Martinou, J.C., 2009. Mitochondrial outer-membrane permeabilization
and remodelling in apoptosis. Int. J. Biochem. Cell Biol. 41, 1884–1889.
Kirkland, R.A., Franklin, J.L., 2003. Bax, reactive oxygen, and cytochrome c release in
neuronal apoptosis. Antioxid. Redox Signal. 5, 589–596.
Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe,
R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A., Herman, B., 1998. The mitochon-
drial permeability transition in cell death: a common mechanism in necrosis,
apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–196.
Martinelli, P., Rugarli, E.I., 2010. Emerging roles of mitochondrial proteases in neu-
rodegeneration. Biochim. Biophys. Acta 1797, 1–10.
Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Wal-
ter, P., Yaffee, M., 1995. Oxidants in mitochondria: from physiology to diseases.
Biochim. Biophys. Acta 1271, 67–74.
Rohn, T.T., Head, E., 2008. Caspase activation in Alzheimer’s disease: early to rise
and late to bed. Rev. Neurosci. 19, 383–393.
Sun, A.Y., Wang, Q., Simonyi, A., Sun, G.Y., 2008. Botanical phenolics and brain health.
Neuromolecular Med. 10, 259–274.
Thomas, G., Branco, U.J., Barbosa, Filho, J.M., Bachelet, M., Vargaftig, B.B.,
1994. Studies on the mechanism of spasmolytic activity of (O-methyl-)-N-
(2,6-dihydroxybenzoyl)tyramine, a constituent of Aniba riparia (Nees) Mez.
(Lauraceae), in rat uterus, rabbit aorta and guinea-pig alveolar leucocytes. J.
Pharm. Pharmacol. 46, 103–107.
Vaux, D.L., Strasser, A., 1996. The molecular biology of apoptosis. Proc. Natl. Acad.
Sci. U. S. A. 93, 2239–2244.
Wei, Y.H., Lu, C.Y., Lee, H.C., Pang, C.Y., Ma, Y.S., 1998. Oxidative damage and mutation
to mitochondrial DNA and age-dependent decline of mitochondrial respiratory
function. Ann. N. Y. Acad. Sci. 854, 155–170.
Winklhofer, K.F., Haass, C., 2010. Mitochondrial dysfunction in Parkinson’s disease.
Biochim. Biophys. Acta 1802, 29–44.
Wu, P.L., Lin, F.W., Wu, T.S., Kuoh, C.S., Lee, K.H., Lee, S.J., 2004. Cytotoxic and anti-HIV
principles from the rhizomes of Begonia nantoensis. Chem. Pharm. Bull. (Tokyo)
52, 345–349.