different organocatalysts have been supported on a variety of
inorganic materials and magnetic nanoparticles4 and, most
successfully, on polystyrene (PS) and other organic poly-
mers,5 and continuous flow processes yielding highly enan-
tioenriched products have been implemented with their use.6
We have recently introduced the polystyrene-supported
bifunctional squaramide PS-SQ (Figure 1) for the Michael
addition of β-dicarbonyl compounds to nitroalkenes.7 We
reasoned that, given the fact that the catalytic performance
of squaramides8 is based on hydrogen bonding rather than
in covalent interactions, PS-SQ would be particularly robust
toward deactivation by off-cycle processes and thus appro-
priate for long-term operation under flow conditions. We
wish to report in this letter the development of a continuous
flow, highly enantioselective Michael addition based on
PS-SQ and the implementation with its use of a device for
the sequential preparation of a library of enantiopure adducts.
Michael donor9 in front of nitroalkenes under catalysis by
our polystyrene-supported squaramide.10 Du and co-work-
ers have shown9f that monomeric squaramides efficiently
catalyze the considered Michael addition.
The reaction between 1 and trans-β-nitrostyrene using
CH2Cl2 as the solvent turned out to be fast and clean, and
full conversions were recorded in very short times. Re-
markably, by employing 5 mol % of the supported catalyst
the reaction was complete in less than 20 min yielding 3a in
96% yield and 97% ee. By lowering the catalyst loading to
only 2 mol %, the same results were achieved in 45 min
(Table 1, entry 1). These conditions were considered as
satisfactory and were used for the rest of the batch study.
Table 1. Michael Addition of 2-Hydroxy-1,4-naphthoquinone
with Nitroalkenesa
time
(h)
yield
(%)b
ee
(%)c
entry
R
product
1
C6H5
3a
3b
3c
3d
3e
3f
0.75
1
96
84
89
87
87
89
90
94
87
95
98
91
56
97
96
93
94
95
91
96
95
96
95
95
98
98
2
4-BrC6H4
Figure 1. PS-supported squaramide organocatalyst.
3
4-MeOC6H4
2-BrC6H4
1
4
1
Even if a highly enantioselective supported catalyst has
been developed,7 an additional condition is required for its
practical use in flow: the reactions have to be fast to allow
complete conversion of the reactants with reduced amounts
of catalyst and short residence times. To satisfy this, we
decided to use 2-hydroxy-1,4-naphthoquinone (1) as a
5
3,4-(OCH2O)-C6H3
2-MeOC6H4
2-thienyl
3
6
2
7
3g
3h
3i
2
8
2-furanyl
2.5
1
9
4-MeC6H4
4-FC6H4
10
11
12
13d
3j
1
4-ClC6H4
3k
3l
1
2-phenylethyl
C6H5
1.5
18
ꢀ
(5) (a) Font, D.; Jimeno, C.; Pericas, M. A. Org. Lett. 2006, 8, 4653.
3m
ꢀ
(b) Alza, E.; Cambeiro, X. C.; Jimeno, C.; Pericas, M. A. Org. Lett. 2007,
a 1(0.2mmol), 2aÀm(0.2mmol), PS-SQ (2mol%) inCH2Cl2 (0.5mL)
at 30 °C. b Isolated yield. c By HPLC. d R2 = Me, dr = 92:8.
ꢀ
9, 3717. (c) Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericas, M. A.
ꢂ
ꢁ
Org. Lett. 2008, 10, 337. (d) Malkov, A. V.; Figlus, M.; Kocovsky, P. J.
ꢀ
Org. Chem. 2008, 73, 3985. (e) Alza, E.; Pericas, M. A. Adv. Synth. Catal.
2009, 351, 3051. (f) Youk, S. H.; Oh, S. H.; Rho, H. S.; Lee, J. E.; Lee,
J. W.; Song, C. E. Chem. Commun. 2009, 2220. (g) Alza, E.; Sayalero, S.;
Kasaplar, P.; Almas-i, D.; Pericas, M. A. Chem.;Eur. J. 2011, 17, 11585.
(h) Puglisi, A.; Benaglia, M.; Annunziata, R.; Siegel, J. S. ChemCatChem
2012, 4, 972.
(6) (a) Alza, E.; Rodrıguez-Escrich, C.; Sayalero, S.; Bastero, A.;
A series of β-nitrostyrenes bearing either electron-with-
drawing or -donating groups, as well as some 2-hetarylni-
troethylenes, weretestedinthereaction (Table1), and inall
cases products were obtained with very high yields and
enantioselectivities in short reaction times. The reaction of
ꢀ
ꢀ
Pericas, M. A. Chem.;Eur. J. 2009, 15, 10167. (b) Alza, E.; Sayalero, S.;
ꢁ
ꢀ
Cambeiro, X. C.; Martın-Rapun, R.; Miranda, P. O.; Pericas, M. A.
ꢁ
Synlett 2011, 464. (c) Cambeiro, X. C.; Martın-Rapun, R.; Miranda,
ꢀ
P. O.; Sayalero, S.; Alza, E.; Llanes, P.; Pericas, M. A. Beilstein J. Org.
€
€
ꢁ
€ €
Chem. 2011, 7, 1486. (d) Otvos, S. B.; Mandity, I. M.; Fulop, F.
ꢁ
ꢁ
(9) (a) Barcia, J. C.; Otero, J. M.; Estevez, J. C.; Estevez, R. J. Synlett
2007, 1399. (b) Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem., Int.
Ed. 2008, 47, 3046. (c) Zhou, W.-M.; Liu, H.; Du, D.-M. Org. Lett. 2008,
10, 2817. (d) Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Zhang, G.-C.; Xia,
A.-B.; Xu, X.-S.; Xu, D.-Q. Eur. J. Org. Chem. 2010, 4981. (e) Wu, R.;
Chang, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C.
Chem. Commun. 2011, 47, 5034. (f) Yang, W.; Du, D.-M. Adv. Synth.
Catal. 2011, 353, 1241. (g) Woo, S. B.; Kim, D. Y. Beilstein J. Org. Chem.
2012, 8, 699.
ꢀ
ꢀ
ChemSusChem 2012, 5, 266. (e) Ayats, C.; Henseler, A. H.; Pericas,
M. A. ChemSusChem 2012, 5, 320. (f) Fan, X.; Sayalero, S.; Pericas,
M. A. Adv. Synth. Catal. 2012, 354, 2971. (g) Bortolini, O.; Caciolli, L.;
Cavazzini, A.; Costa, V.; Greco, R.; Massi, A.; Pasti, L. Green Chem.
2012, 14, 992.
ꢀ
(7) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericas, M. A. Adv.
Synth. Catal. 2012, 354, 2905.
(8) For pioneering works in squaramide-based catalysts, see: (a)
Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130,
14416. (b) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Org.
Lett. 2010, 12, 2028. (c) Qian, Y.; Ma, G.; Lv, A.; Zhu, H. L.; Zhao, J.;
Rawal, V. H. Chem. Commun. 2010, 46, 3004. (d) Zhu, Y.; Malerich,
J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010, 49, 153. For reviews on
(10) For squaramide catalysts in nitro group activation, see: (c)
Yang, W.; Du, D.-M. Org. Lett. 2010, 12, 5450. (d) Bae, H. Y.; Some, S.;
Lee, J. H.; Kim, J.-Y.; Song, M. J.; Lee, S.; Zhang, Y. J.; Song, C. E. Adv.
Synth. Catal. 2011, 353, 3196. (e) Bae, H. Y.; Some, S.; Oh, J. S.; Lee,
Y. S.; Song, C. E. Chem. Commun. 2011, 47, 9621. (f) Marcos, V.;
ꢁ
ꢁ
squaramides in catalysis, see: (e) Aleman, J.; Parra, A.; Jiang, H.;
Aleman, J.; Garcia Ruano, J. L.; Marini, F.; Tiecco, M. Org. Lett. 2011,
Jørgensen, K. A. Chem.;Eur. J. 2011, 17, 6890. (f) Storer, R. I.; Aciro,
C.; Jones, L. H. Chem. Soc. Rev. 2011, 40, 2330.
13, 3052. (g) Yang, W.; Du, D.-M. Chem. Commun. 2011, 47, 12706. (h)
Palacio, C.; Connon, S. J. Chem. Commun. 2012, 48, 2849.
Org. Lett., Vol. 15, No. 14, 2013
3499