superior to that of compound 27. Compounds 32a, c, and d were
prepared by substituting carbamate tert-butyl groups with ethyl
pyrimidine groups to improve metabolic stability. Overall,
activity was good and compound 32d (EC50 = 18 nM) with tolyl
was more active than compound 27 (EC50 = 49 nM) with a
fluorophenyl ring. Compounds 33a–d and 34a–d were obtained
by replacing ethylpyrimidine with tert-alcohol and fluorine,
respectively, in the tail moiety, but no agonistic effect was
observed.
activity for GPR119 and improved pharmacokinetic profiles.
Several compounds showed good agonistic activity (EC50 < 100
nM) and potency. Among them, compounds 27 and 32d showed
good in vitro activities with EC50 values of 49 nM and 18 nM,
respectively. These compounds did not exhibit significant CYP
inhibition, hERG binding, or cytotoxicity.
Acknowledgments
The in vitro data shown in Table 1−3 indicated that 27 and
32d should be selected as prototype compounds. Compounds 27
and 32d were evaluated for stability, ability to induce or inhibit
CYP, hERG binding, and cytotoxicity. As shown in Table 4,
compounds 27 and 32d were more metabolically stable than
MBX-2982 in human and rat liver microsomes. In CYP
inhibition assays with several CYP subtypes, compounds 27 and
32d did not significantly inhibit CYP and showed no hERG
binding. To evaluate in vivo efficacy, an oral glucose tolerance
test (OGTT) was performed with compounds 27 and 32d. Plasma
glucose levels were determined based on the AUC of the glucose
concentration and were reduced at the 30 mg/kg dose. The in vivo
efficacy of these two compounds was similar to that of MBX-
2982 (Figure 2).
This work was supported by the KRICT (KK1703-G00,
KK1707-C05, SI1707-02, KK1607-C09) and National Research
Council of Science and Technology (SKO1707C05).
† These authors contributed equally to this work.
References and notes
1.
(a) Biddinger, S. B.; Kahn, C. R. Annu. Rev. Physiol. 2006, 68,
123.
(b) Rayburn, W.F. J. Reprod. Med. 1997, 42,585.
2. Tahrani, A. A.; Bailey, C. J.; Prato, S. D.; Barnett, A. H. Lancet.
2011, 378, 182.
3. (a) Ahren, B. Nat. Rev. Drug. Disc. 2009, 8, 369.
(b) Drucker, D. J.; Sherman, S. I.; Gorelick, F. S.; Bergenstal, R.
M.; Sherwin, R. S.; Buse, J. B. Diabetes. Care. 2010, 33, 428.
4. (a) Inzucchi, S. E. J. Am. Med. Assoc. 2002, 287, 360.
(b) Owens, D. R.; Zinman, B.; Bolli, G. B. Lancet. 2001, 358, 739.
(c) Bailey, C. J. Curr. Diabet. Rep. 2005, 5, 353.
(d) Campbell, R. K.; White, J. R. Diabet. Educator. 2008, 34, 518.
5. Koro, C. E.; Bowlin, S. J.; Bourgeois, N.; Fedder, D. O. Diabetes.
Care. 2004, 27, 17.
6. (a) Soga, T.; Ohishi, T.; Matsui, T.; Saito, T.; Matsumoto, M.;
Takasaki, J.; Matsumoto, S.; Kamohara, M.; Hiyama, H.; Yoshida,
S.; Momose, K.; Ueda, Y.; Matsushime, H.; Kobori, M.; Furuichi,
K. Biochem. Biophys. Res. Commun. 2005, 3267, 44.
(b) Chu, Z. L.; Carroll, C.; Alfonso, J.; Gutierrez, V.; He, H.;
Lucman, A.; Pedraza. M.; Mondala, H.; Gao, H.; Bagnol, D.;
Chen, R.; Jones, R. M.; Behan, D. P.; Leonard. J. Endocrinology.
2008, 149, 2038.
(c) Sakamoto, Y.; Inoue, H.; Kawakami, S.; Miyawaki, K.;
Miyamoto, T.; Mizuta, K.; Itakura, M. Biochem. Biophys. Res.
Commun. 2006, 351, 474.
7. (a) Gao, J.; Tian, L.; Weng, G.; Bhagroo, N. V.; Sorenson, R. L.;
O'Brien, T. D.; Luo. J.; Guo, Z. Transpl. Int. 2011, 24, 1124.
(b) Ohishi, T.; Yoshida, S. Expert Opin Investig Drugs. 2012, 21,
321.
8. Ritter, K.; Buning, C.; Halland, N.; Pöverlein, C.; Schwink, L. J.
Med. Chem. 2016, 59, 3579.
Figure 2. In vivo oral glucose tolerance tests of compound 27 & 32d in
normal mice. Results are expressed as means ± SEM for n = 7 mice/group.
9. (a) Jeon, M. K.; Lee, K. M.; Kim, I. H.; Jang, Y. K.; Kang, S. K.;
Lee, J. M.; Jung, K. Y.; Kumar, J. A.; Rhee, S. D.; Jung, W. H.;
Song, J. S.; Bae, M. A.; Kim, K. R.; Ahn, J. H. Bioorg. Med.
Chem. Lett. 2014, 24, 4281.
(b) Polli, J. W.; Hussey, E.; Bush, M.; Generaux, G.; Smith, G.;
Collins, D.; McMullen, S.; Turner, N.; Nunez, D. J. Xenobiotica.
2013, 43, 498.
(c) Nunez, D. J.; Bush, M. A.; Collins, D. A.; McMullen, S. L.;
Gillmor, D.; Apseloff, G.; Atiee, G.; Corsino, L.; Morrow, L.;
Feldman, P. L. PLoS One. 2014, 9, e92494.
(d) Semple, G.; Ren, A.; Fioravanti, B.; Pereira, G.; Calderon, I.;
Choi, K.; Xiong, Y.; Shin, Y. J.; Gharbaoui, T.; Sage, C. R.;
Morgan, M.; Xing, C.; Chu, Z. L.; Leonard, J. N.; Grottick, A. J.;
Al-Shamma, H.; Liang, Y.; Demarest, K. T,; Jones, R. M. Bioorg.
Med. Chem. Lett. 2011, 21, 3134.
(e) Kang, S. –U. Drug. Discov. Today. 2013, 18, 1309.
10. Xia, Z.; Farhana, L.; Correa, R. G.; Das, J. K.; Castro, D. J.; Yu,
J.; Oshima, R. G.; Reed, J. C.; Fontana, J. A.; Dawson, M. I. J.
Med. Chem. 2011, 54, 3793.
11. Bellale, E.; Naik, M.; VB, V.; Ambady, A.; Narayan, A.;
Ravishankar, S.; Ramachandran, V.; Kaur, P.; McLaughlin, R.;
Whiteaker, J.; Morayya, S.; Guptha, S.; Sharma, S.; Raichurkar,
A.; Awasthy, D.; Achar, V.; Vachaspati, P.; Bandodkar, B.;
Panda, M.; Chatterji, M. J. Med. Chem. 2014, 57, 6572.
12. Mcwherter, C. A.; Martin, R. L.; Karpf, D. B.; Roberts, B. K.;
Lorenz, D. A.; Ketner, R. J. WO Patent 2011163090.
In conclusion, we identified a series of thiazole derivatives as
GPR119 agonists containing pyrrolidine-2,5-dione. These
compounds had a polar head as a novel methanesulfonyl/tetrazole
surrogate in structures of GPR119 agonists. The substitution of
pyrrolidine-2,5-dione for the tetrazole ring of MBX-2982
compound as a novel polar head moiety resulted in increased
6