A R T I C L E S
Gnichwitz et al.
played by the linker is not just structural, since its chemical
nature governs the electronic communication between the
terminal units (i.e., porphyrin and C60). Another important
feature of the spacer is its modular composition, which allows
altering the separation without affecting the electronic nature
of the connection.
Noncovalent electron donor-acceptor nanohybrids based on
supramolecular interactions are rarely known.7 To this end, we
have published the synthesis of an electron-transfer system based
on noncovalent electrostatic interactions between C60 and a
porphyrin or cytochrome C complex. In the resulting coulomb
complexes, the interactions between, for instance, the dendritic
Figure 1. Schematic representation of the complementary hydrogen
bonding motif of a cyanuric acid derivative and a Hamilton receptor.
on electron- and energy-transfer processes, and (iii) high
solubility of the corresponding hybrid architectures.9
C60 oligocarboxylate and the octapyridinium porphyrin salt stem
Recently, we have introduced a series of first-, second-, and
third-generation depsipeptide dendrons, including the all-R
configured 1-3 that bear cyanuric acid moieties at their focal
points.10 Strong six-point hydrogen bonding (Ka ≈ 103-106
M-1) with, for example, complementary Hamilton receptors11
(Figure 1) attached to a variety of molecular platforms renders
these dendrons as excellent building blocks to achieve the facile
construction of new functional supramolecular architectures.10,12
These include self-assembled dendrimers involving porphyrins
as electroactive components, which, except for the dendritic
pocket receptors reported by Tsukube and co-workers,13 are the
first representatives of this hydrogen bonded class of com-
pounds.14 Covalent dendrimers with porphyrin cores, on the
other hand, have been extensively investigated as intriguing
mimics for globular heme proteins.15
from the oppositely charged head groups of the two building
blocks. This, in turn, provides sufficiently strong electronic
couplings to power intrahybrid charge-separation processes.8
With respect to photoinduced charge separation, this approach
provides benefits for the successful fabrication of photovoltaic
devices that perform efficiently on the basis of hierarchically
ordering the individual building blocks, namely, donors and
acceptors.
Among the many supramolecular binding motifs that are
available, hydrogen bonding is considered as the structurally
most potent one. We have already shown the enormous potential
that rests on the highly directional self-assembly of porphyrin-
C60 electron donor-acceptor hybrids via hydrogen bonding. In
fact, our approach ensures (i) fine-tuning of the complexation
The importance of noncovalent building principles in protein
chemistry is undisputed and inspired us to develop for the first
time a modular concept toward supramolecular heme-protein
models. Key features are chromophoric and nonchromophoric
depsidpeptide dendrons 1-5 as protein mimics, which are
interchangeable at the tin-tetraphenyl-porphyrin (SnP) platform
strength, (ii) regulation of the electronic coupling and its impact
(6) (a) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537. (b) Prato, M. J.
Mater. Chem. 1997, 7, 1097. (c) Mart´ın, N.; Sa´nchez, L.; Illescas, B.;
Pe´rez, I. Chem. ReV. 1998, 98, 2527. (d) Diederich, F.; Go´mez-Lo´pez,
M. Chem. Soc. ReV. 1999, 28, 263. (e) Imahori, H.; Sakata, Y. Eur.
J. Org. Chem. 1999, 2445. (f) Guldi, D. M. Chem. Commun. 2000,
321. (g) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695. (h)
Reed, C. A.; Bolskar, R. D. Chem. ReV. 2000, 100, 1075. (i) Gust,
D.; Moore, T. A.; Moore, A. L. J. Photochem. Photobiol. B. 2000,
58, 63. (j) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res.
2001, 34, 40. (k) Guldi, D. M. Chem. Soc. ReV. 2002, 31, 22. (l) Guldi,
D. M.; Mart´ın, N. J. Mater. Chem 2002, 12, 1978. (m) Meijer, M. D.;
van Klink, G. P. M.; van Koten, G. Coord. Chem. ReV. 2002, 230,
141. (n) Guldi, D. M. Pure Appl. Chem. 2003, 75, 1069. (o) Imahori,
H.; Mori, Y.; Matano, Y. J. Photochem. Photobiol. C 2003, 4, 51.
(7) (a) Ferna´ndez, G.; Pe´rez, E. M.; Sa´nchez, L.; Mart´ın, N. Angew. Chem.
2008, 120, 1110; Angew. Chem., Int. Ed. 2008, 47, 1094. (b) Torres,
T.; Gouloumis, A.; Sanchez-Garcia, D.; Jayawickramarajah, J.; Seitz,
W.; Guldi, D. M.; Sessler, J. L. Chem. Commun. 2007, 292. (c)
McClenaghan, N. D.; Grote, Z.; Darriet, K.; Zimine, M.; Williams,
R. M.; de Cola, L.; Bassani, D. M. Org. Lett. 2005, 7, 807. (d) Beckers,
E. H. A.; Schenning, A. P. H. J.; van Hal, P. A.; El-ghayoury, A.;
Sa´nchez, L.; Hummelen, J. C.; Meijer, E. W.; Janssen, R. A. J. Chem.
Commun. 2002, 2888. (e) Mateo-Alonso, A.; Sooambar, C.; Prato,
M. C. R. Chim. 2006, 9, 944. (f) Eckart, J.-F.; Byrne, D.; Nicoud,
J.-F.; Oswald, L.; Nierengarten, J.-F.; Numata, M.; Ikeda, A.; Shinaki,
S.; Armaroli, N. New. J. Chem. 2000, 24, 749. (g) Diederich, F.;
Kessinger, R. Acc. Chem. Res. 1999, 32, 537–545. (h) Spillmann, H.;
Kiebele, A.; Sto¨ hr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F. Y.;
Diederich, F. AdV. Mater. 2006, 18, 275. (i) Bonifazi, D.; Accorsi,
G.; Armaroli, N.; Song, F. Y.; Palkar, A.; Echegoyen, L.; Scholl, M.;
Seiler, P.; Jaun, P.; Diederich, F. HelV. Chim. Acta 2005, 88, 1839.
(j) Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.;
Cheng, F. Y.; Gu¨ntherodt, H. J.; Jung, T.; Diederich, F. Angew. Chem.
2004, 116, 4863; Angew. Chem., Int. Ed. 2004, 43, 4759. (k) Bonifazi,
D.; Diederich, F. Chem. Commun. 2002, 2178.
(9) (a) Wessendorf, F.; Gnichwitz, J.-F.; Sarova, G. H.; Hager, K.;
Hartnagel, U.; Guldi, D. M.; Hirsch, A. J. Am. Chem. Soc. 2007, 129,
16057. (b) Sanchez, L.; Sierra, M.; Martin, N.; Myles, A. J.; Dale,
T. J.; Rebek, Jr, J.; Seitz, W.; Guldi, D. M. Angew. Chem. 2006, 118,
4753; Angew. Chem., Int. Ed. 2006, 45, 4637. (c) D’Souza, F.; El-
Khouly, M. E.; Gadde, S.; Zandler, M. E.; McCarty, A. L.; Araki, Y.;
Ito, O. Tetrahedron 2005, 62, 1967. (d) Guldi, D. M. Chem. Commun.
2000, 5, 321. (e) Sessler, J. S.; Wang, B.; Springs, S. L.; Brown C. T.
In CromprehensiVe Supramolecular Chemistry; Atwood, J. L., Davies,
J. E. D., MacNicol, D. D., Vo¨gtle, F., Eds.; Pergamon: New York,
1996; Chapter 9. (f) Piotrowiak, P. Chem. Soc. ReV. 1999, 28, 143.
(10) (a) Hager, K.; Franz, A.; Hirsch, A. Chem.sEur. J. 2006, 12, 2663.
(b) Maurer, K.; Hager, K.; Hirsch, A. Eur. J. Org. Chem. 2006, 15,
3338. (c) Hager, K.; Hartnagel, U.; Hirsch, A. Eur. J. Org. Chem.
2007, 12, 1942.
(11) Chang, S. K.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 1318.
(12) Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J. M.
Chem.sEur. J. 2002, 8, 1227.
(13) Shinoda, S.; Ohashi, M.; Tsukube, H. Chem.sEur. J. 2007, 13, 81.
(14) For systems involving coordinative complexation of dendritic ligand
to a porphyrin platform, see: Tomoyose, Y.; Jiang, D.-L.; Jin, R.-H.;
Aida, T.; Yamashita, T.; Horie, K.; Yashima, E.; Okamoto, Y.
Macromolecules 1996, 29, 5236.
(15) (a) Felber, B.; Diederich, F. HelV. Chim. Acta 2005, 88, 120. (b)
Collmann, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. ReV.
2004, 104, 561. (c) Weyermann, P.; Diederich, F. HelV. Chim. Acta
2002, 85, 599. (d) Matos, M. S.; Hofkens, J.; Verheijen, W.; De
Schryver, F. C.; Hecht, S.; Pollak, K. W.; Fre´chet, J. M. J.; Forier,
B.; Dehaen, W. Macromolecules 2000, 33, 2967. (e) Weyermann, P.;
Gisselbrecht, J.-P.; Boudon, C.; Diederich, F.; Gross, M. Angew. Chem.
1999, 111, 3400; Angew. Chem., Int. Ed. Engl. 1999, 38, 3215. (f)
Pollak, K. W.; Leon, J. W.; Fre´chet, J. M. J.; Maskus, M.; Abrun˜a,
H. D. Chem. Mater. 1998, 10, 30. (g) Dandliker, P. J.; Diederich, F.;
Gross, M.; Knobler, C. B.; Louati, A.; Sanford, E. Angew. Chem. 1994,
106, 1821; Angew. Chem., Int. Ed. Engl. 1994, 33, 1739.
(8) (a) Guldi, D. M.; Zilbermann, I.; Anderson, G.; Li, A.; Balbinot, D.;
Jux, N.; Hatzimarinaki, M.; Hirsch, A.; Prato, M. Chem. Commun.
2004, 6, 726. (b) Balbinot, D.; Atalick, S.; Guldi, D. M.; Hatzimarinaki,
M.; Hirsch, A.; Jux, N. J. Phys. Chem. B 2003, 107, 13273. (c)
Hartnagel, U.; Balbinot, D.; Jux, N.; Hirsch, A. Org. Biomol. Chem.
2006, 4, 1785.
9
8492 J. AM. CHEM. SOC. VOL. 130, NO. 26, 2008