C. Zhang et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 102 (2013) 256–262
261
physical properties were investigated in detail. The results show
that MMPAO, MOPAO and MDMAPAO have lower fluorescence
quantum yields. Their quantum yield, fluorescence lifetime and
spectral characteristics are less dependent on the solvent polarity.
By contrast, MDPAPAO displays larger changes in fluorescence
emission spectrum, dipole moment and quantum yield in different
solvent polarity. The bi-exponential fluorescence decay behavior of
MDPAPAO indicates that the triphenylamine moiety on MDPAPAO
can enhance its ICT character as well as increase its fluorescence
quantum yield. In addition, C60 could efficiently quench the fluo-
rescence emission of MDPAPAO, inferring that C60 can inhibit the
ICT of MDPAPAO. The special ICT properties of MDPAPAO could
possibly facilitate its use as a laser dye, fluorescent probe and lumi-
nescent material in the many fields.
(a)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1
9
500
600
700
Acknowledgements
Wavelength (nm)
The work described in this paper was supported by the National
Nature Science Foundation (Nos. 21175086 and21105060) and the
Science Foundation of Shanxi Province (2012011007-2).
(b)
600
500
400
300
200
100
0
1.8
1.6
1.4
1.2
1.0
References
[1] E. Lippert, W. Luder, H. Boos, in: Mangini (Ed.), Adv. Mol. Spectrosc. A 1 (1962)
443.
y=73693x+0.9754
R2=0.9962
[2] B.K. Paul, A. Samanta, S. Kar, N. Guchhait, J. Lumin. 130 (2010) 1258.
[3] A.A. Farghaly, A.A. Bekhit, J.Y. Park, Arch. Pharm. 333 (2000) 53.
[4] E.A. Bakhite, A.A. Geies, H.S. El-Kashef, Phosphor. Sulfur 157 (2000) 107.
[5] G.F. Yang, H.Z. Yang, Chin. J. Chem. 18 (2000) 585.
[6] A.N. Kost II., Grandberg, Adv. Heterocycl. Chem. 6 (1966) 347.
[7] K. Rotkiewiz, W. Rettig, G. Kohler, Chem. Phys. 307 (2004) 45.
[8] N.S. Habib, K.A. Ismail, A.A. El-Tombary, Pharmazie 55 (2000) 495.
[9] T. Yamamoto, K. Namekawa, I. Yamaguchi, T.A. Koizumi, Polymer 48 (2007)
2331.
0
2
4
6
8
10
12
Concentration of C60 (uM)
[10] R.M.F. Batista, S.P.G. Costa, M. Belsley, M. Manuela, M. Raposo, Tetrahedron 63
(2007) 9842.
[11] J. Pina, R.M.F. Batista, S.P.G. Costa, M. Manuela, M. Raposo, J. Phys. Chem. B 114
(2010) 4964.
[12] M.M.M. Raposo, G. Kirsch, P. Cardoso, M. Belsley, A.M.C. Fonseca, Org. Lett. 8
(2006) 3681.
[13] T. Yamamoto, T. Uemura, A. Tanimoto, S. Sasaki, Macromolecules 36 (2003)
1047.
400
450
500
550
600
650
700
Wavelength/nm
Fig. 4. (a) UV–visible absorption spectrum of 0.275 mM C60 in toluene in the
presence of various concentrations of MDPAPAO: (1) 0.0, (2) 0.0366, (3) 0.0644, (4)
0.0936, (5) 0.121, (6) 0.147, (7) 0.172, (8) 0.195, and (9) 0.217 mM. (b) Fluorescence
quenching effect of C60 on the emission spectrum of 0.235 mM MDPAPAO in
toluene. The concentrations of C60 are (1) 0.0, (2) 1.83, (3) 3.68, (4) 5.49, (5) 7.33, (6)
9.16, (7) 11.0, (8) 12.8, (9) 14.7, (10)16.5, (11)18.3, (12)20.2 (13)22.0, (14)23.8,
(15)25.6 and (16)27.5 lM. The inset displays the Stern–Volmer plot of C60, where Fo
and F are the emission intensities of MDPAPAO in the absence and presence of C60
The excitation wavelength is 345 nm.
[14] T. Yamamoto, H. Suganuma, Maruyama, K. Kubota, J. Chem. Soc. Chem.
Commun. 16 (1995) 1613.
[15] T. Yamamoto, M. Arai, H. Kokubo, S. Sasaki, Macromolecules 36 (2003) 7986.
[16] T. Yasuda, T. Imase, S. Sasaki, T. Yamamoto, Macromolecules 38 (2005) 1500.
[17] G. Zhou, Y. Cheng, L. Wang, X. Jing, F. Wang, Macromolecules 38 (2005) 2148.
[18] Y. Cheng, L. Chen, X. Zou, J. Song, W. Zhiliu, Polymer 47 (2006) 435.
[19] C.L. Liu, F.C. Tsai, C.C. Chang, K.H. Hsieh, J.L. Lin, W.C. Chen, Polymer 46 (2005)
4950.
.
[20] S. Ionescu, D. Popovici, A.T. Balaban, M. Hillebrand, Spectrochim. Acta Part A 62
(2005) 252.
[21] O.N. Lukavenko, S.V. Eltsov, A.V. Grigorovich, N.O. Mchedlov-Petrossyan, J.
Mol. Liq. 145 (2009) 167.
[22] A.C. Giddens, H.I.M. Bosho, S.G. Franzblau, C.E. Barry, B.R. Copp, Tetrahedron
Lett. 46 (2005) 7355.
[23] K.A.Z. Siddiquee, P.T. Gunning, M. Glenn, W.P. Katt, S. Zhang, C. Schroeck, S.M.
Sebti, R. Jove, A.D. Hamilton, J. Turkson, ACS Chem. Biol. 2 (2007) 787.
[24] M. Kaspady, V.K. Narayanaswamy, M. Raju, G.K. Rao, Lett. Drug Des. Discov. 6
(2009) 21.
strong absorption bands at about ꢅ290 and ꢅ320 nm with tail
extending to 340 nm, so the excitation wavelength at 345 nm
was chosen to study the interaction between MDPAPAO and C60
.
From the Fig. 4b we can found that the emission intensity de-
creases with the increase in concentration of C60. It is obvious that
the emission of MDPAPAO is seriously quenched by C60. The inset
displays the Stern–Volmer plot (Fo/F = 1 + KSV [C60], KSV = kqs) of C60,
where the Fo and F are the emission intensity of MDPAPAO in the
absence and presence of C60, and KSV is the Stern–Volmer constant.
A linear straight line is obtained. The fluorescence lifetime of
MDPAPAO was 3.51 ns in toluene, the quenching rate constant
kq was 2.1 ꢃ 1013 L/(mol s). The fluorescence emission extending
to 600–700 nm was measured and the C60 fluorescence was not ap-
peared in the 600–700 region, indicating that C60 can efficiently
quench the photo-induced ICT process of the triphenylamine sys-
tem in MDPAPAO with C60 acting as the electron acceptor [46].
[25] R. Luchowski, Chem. Phys. Lett. 501 (2011) 572.
[26] P. Purkayastha, N. Chattopadhyay, J. Mol. Struct. 604 (2002) 87.
[27] C.M. Selwitz, A.I. Kosack, J. Am Chem. Soc. 77 (1955) 5370.
[28] L.N. Ferguson, Chem. Rev. 38 (1946) 227.
[29] Y.J. Wei, Z.M. Kang, X.J. Qi, Y.P. Zhang, C.G. Liu, Huaxue Xuebao 59 (2001) 1619.
[30] W.H. Melhuish, J. Phys. Chem. 64 (1960) 762.
[31] W. Rettig, M. Zander, Chem. Phys. Lett. 87 (1982) 229.
[32] C.H. Zhang, L.H. Feng, Z.B. Chen, Chem. Phys. Lett. 420 (2006) 330.
[33] J. Hicks, M. Vandersall, Z. Babaogic, K.B. Eisenthal, Chem. Phys. Lett. 135 (1987)
413.
[34] P.R. Bangal, S. Panja, S. Chakravorti, J. Phys. Chem. A 103 (1999) 8585.
[35] S.A. Lyazidi, M. Dkaki, N. Bitit, D. Meziane, C.C. Dubroca, P.H. Cazeau,
Spectrochim. Acta Part A 55 (1999) 89.
[36] K.A. Zachariasse, M. Grobys, E. Tauer, Chem. Phys. Lett. 274 (1997) 372.
[37] P.M.T. Ferreira, E.M.S. Castanheira, L.S. Monteiro, G. Pereira, H. Vilaca,
Tetrahedron 66 (2010) 8672.
[38] C. Ranjitha, K.K. Vijayana, V.K. Praveena, N.S. Saleesh-Kumara, Spectrochim.
Acta Part A 75 (2010) 1610.
Conclusion
New 2-phenyloxazoles MMPAO, MOPAO, MDMAPAO, and
MDPAPAO have been successfully synthesized and their photo-