C O M M U N I C A T I O N S
Scheme 1. Activation-Strain Analysis
Acknowledgment. We thank NSERC, the Research Corpora-
tion, the Sloan Foundation, the ACS (PRF AC), Merck Frosst,
Merck Inc, Amgen, Eli Lilly, Astra Zeneca, and Boehringer
Ingelheim for financial support. We thank Prof. Tom K. Woo
computing facilities use funded by the CFI and the ORF.
Supporting Information Available: Experimental procedures and
computational details. This material is available free of charge via the
References
Table 1. Distortion/Interaction Analysis (kcal mol-1) for the Lowest
Free Energy CMD Transition States
(1) (a) Kakiuchi, F.; Chatani, N. AdV. Synth.Catal. 2003, 345, 1077. (b)
Daugulis, O; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A.
Synlett 2006, 20, 3382. (c) Campeau, L.-C.; Stuart, D. R.; Fagnou, K.
Aldrich. Chim. Acta 2007, 40, 35. (d) Seregin, I. V.; Gevorgyan, V. Chem.
Soc. ReV. 2007, 36, 1173. (e) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174.
(2) For recent examples, see: (a) Deprez, N. R.; Kalyani, D.; Krause, A.;
Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (b) Kalyani, D.; Deprez,
N. R; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. (c)
Toure´, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979. (d)
Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett.
2007, 9, 2333. (e) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K.
J. Am. Chem. Soc. 2006, 128, 8754. (f) Campeau, L.-C.; Parisien, M.; Jean,
A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (g) Garcia-Cuadrado,
D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc.
2006, 128, 1066. (h) Zaitsev, V. G.; Daugulis, O. Angew. Chem., Int. Ed.
2005, 44, 4046. (i) Shabashov, D.; Daugulis, O. Org. Lett. 2006, 8, 4947.
(j) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang,
Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (k) Campeau, L.-C.; Bertrand-
Laperle, M.; Leclerc, J.-P.; Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am.
Chem. Soc. 2008, 130, 3276. (l) Campeau, L.-C.; Bertrand-Laperle, M.;
Leclerc, J.-P.; Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 3276.
a Pd(Ph)(PMe3)(OAc). b NPA-derived charge (a.u.) of arene. c Mayer
bond order for Pd-CA interaction.
(3) For recent examples with other metals: Rh: (a) Lewis, J. C.; Berman, A. M.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493. (b)
Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (c)
Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006,
128, 11748 Ru: (d) Born, R.; Althammer, A.; Ackermann, L. Angew. Chem.,
Int. Ed. 2006, 45, 2619 Cu: (e) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc.
2008, 130, 1128.
(4) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002,
124, 5286.
(5) (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull.
Chem. Soc. Jpn. 1998, 71, 467. (b) Lane, B. S.; Brown, M. A.; Sames, D.
J. Am. Chem. Soc. 2005, 127, 8050. (c) Park, C.-H.; Ryabova, V.; Seregin,
I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159.
(6) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. Org.
Lett. 2003, 5, 301.
(7) See refs refs 2e,g and Garcia-Cuadrado, D.; de Mendoza, P.; Braga,
A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129,
6880. CMD with Ru-catalyzed arylations: (a) Ozdemir, I.; Demir, S.;
Cetinkaya, B.; Gourlauoen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H.
J. Am. Chem. Soc. 2008, 130, 1156. (b) Ackermann, L.; Vicente, R.;
Althammer, A. Org. Lett. 2008, 10, 2299. For its involvement in
cyclometalation with Pd(OAc)2, see: (c) Davies, D. L.; Donald, S. M. A.;
Al-Duaij, O.; Macgregor, S. A.; Polleth, M. J. Am. Chem. Soc. 2006, 128,
4210.
Figure 3. Changes in C-H bond lengths (∆dC-H) and the distortion
energies (Edist) for arenes 1-14 for CMD TSs.
These studies also cast light on the superior reactivity of 14 over
13. The presence of the fluorine atom has little impact on Eint but
results in a pronounced decrease in Edist resulting in a more facile
arene palladation.
(8) For illustrative examples with each substrate class, see: Thiazole N-oxide:
see ref 8. Pyridine N-oxide: see ref 9. Thiazoles: see ref 5a. Thiophenes/
Furans: (a) Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga,
K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honma,
R.; Akita, Y.; Ohta, A. Heterocycles 1992, 33, 257. Imidazopyrimidines:
(b) Li, W.; Nelson, D. P.; Jensen, M. S.; Heorrner, R. S.; Javadi, G. J.;
Cai, D.; Larsen, R. D Org. Lett. 2003, 5, 4835 Indolizines: See ref 5c.
Pentafluorobenzene: (c) Lafrance, M.; Shore, D.; Fagnou, K. Org. Lett.
2006, 8, 5097Benzene: (d) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc.
2006, 128, 16496.
The Eint reflects the strength of the carboxylate-HAr and Pd-CAr
interactions. The accessible electron density of arene defines the
CAr-Pd covalent interaction15 and can be quantified by the Pd-CAr
bond order16 at the TS (Table 1). The factors contributing to Edist
are a focus of ongoing study. Previously, a correlation between
C-H acidity and reactivity with electron-deficient arenes such as
12 has been noted.2e A closer examination of C-H bond elongation
(∆dC-H) at the CMD TSs reveals that the largest ∆dC-H values
are, in fact, not associated with the most acidic arenes (Figure 3).
This indicates that simple Bro¨nsted acidity may be a paralleling
trend in some cases but not a governing influence.
These studies indicate that the involvement of the CMD
mechanism, as described or as a related variant, may be much more
broadly implicated than previously imagined in palladium-catalyzed
direct arylation. Further critical mechanistic evaluation of this
pathway should lead to a better understanding of the necessary
substrate/catalyst parameters leading to successful coupling and
facilitate the establishment of predictive rules for use with pal-
ladium-catalyzed direct arylation in biaryl synthesis.
(9) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.;
Parr, R. G. Phys. ReV. 1988, B37, 785.
(10) Other pathways that were investigated include C-H oxidative insertion,
outer sphere CMD, and Heck-like carbometalation.
(11) See Supporting Information for computational and experimental details.
(12) A competition Friedel-Crafts acylation reaction involving 13 and 14 results
in the preferential reaction of 13 (6.7:1; 13/14) and a 4.4:1 ratio of reaction
at C3/C2 on 13. See Supporting Information for experimental details.
(13) For an informative review on the behavior of fluoroaromatics in SEAr
reactions, see: Rosenthal, J.; Schuster, D. I. J. Chem. Educ. 2003, 80, 679.
(14) For a recent example of this type of analysis with palladium-catalyzed cross-
coupling reactions, see: Legault, C. Y.; Garcia, Y.; Merlic, C. A.; Houk,
K. N. J. Am. Chem. Soc. 2007, 129, 12664, and refs therein.
(15) This usually involves the HOMO as well as other lower lying orbitals. For
the MOs contributing to this property, see Table S1.
(16) Mayer, I. Chem. Phys. Lett. 1983, 97, 270.
JA802533U
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10849