Table 4 Co2Rh2-Catalyzed [2+2+1] cycloaddtion of bisallenesa
H. Nonetheless, it is believed that the 1,3-hydrogen shift is
catalyzed by some Lewis acidic or basic species present within
the reaction mixture after carbonylation. The drive for
isomerization of IV to create the product is the relief of strain
in the twisted diene chromophore.
Entry Bisallene
Product
Yield (%)b
In conclusion, we have developed the first catalytic inter-
and intramolecular [2+2+1] cocyclization of allenes and CO.
This process provides a rapid and atom-economical method
for the synthesis of a variety of cyclopentenones with an
exocyclic double bond, or [5.3]bicyclic enones in one step.
The process developed in this study will enrich the chemistry
of Pauson–Khand-type transformations and related reactions.
This work was supported by grant No. (R01-2005-000-10548-
0) from the Basic Research Program of the Korea Science &
Engineering Foundation, the Korean Government (MOEHRD)
(KRF-2005-070-C00072 and R02-2004-000-10005-0), and the
SRC/ERC program of MOST/KOSEF (R11-2005-065). JHP,
EK, and HMK thank the Brain Korea 21 fellowships.
1
2
3
R1 = Me, R2 = H 10a 10b
R1 = H, R2 = Ph 11a 11b
R1 = H, R2 = Me 12a 12b
67
74
53
4
45
a
Reaction condition: 0.3 mmol allene, 5 mol% Co2Rh2 catalyst, 3 mL
b
toluene, 100 1C, and 4 h. Isolated yield.
Notes and references
y Phenylallene 1a (1.0 mmol, 116 mg), 5 mol% Co2Rh2 (45 mg of the
immobilized Co2Rh2), and toluene (5 mL) were placed in a 100 mL
stainless steel autoclave equipped with a stirring bar. The reactor was
charged with 2 atm of CO and heated at 130 1C for 6 h. After the
reactor was cooled to room temperature, the solution was filtered and
concentrated, and the product isolated by chromatography on a silica
gel column eluting with hexane and ethyl acetate (v/v, 4 : 1) to give 1b
(88 mg, 68% yield) and 1c (13 mg, 12% yield).
Scheme 3 Co2Rh2 catalyzed cycloisomerization of 14a.
1 For reviews, see: (a) K. M. Brummond and J. E. DeForrest,
Synthesis, 2007, 795–818; (b) S. Ma, Chem. Rev., 2005, 105,
2829–2872; (c) L. K. Sydnes, Chem. Rev., 2003, 103, 1133–1150.
2 For reviews, see: (a) R. W. Bates and V. Satcharoen, Chem. Soc.
Rev., 2002, 31, 12–21; (b) R. Zimmer, C. U. Dinesh, E. Nandanan
and F. A. Khan, Chem. Rev., 2000, 100, 3067–3126. For selected
recent examples of metal-catalyzed reactions with allenes, see: (c)
H. A. Wegner, A. de Meijere and P. A. Wender, J. Am. Chem. Soc.,
2005, 127, 6530–6531(d) J. Barluenga, R. Vicente, P. Barrio, L. A.
Lopez and M. Tomas, J. Am. Chem. Soc., 2004, 126, 5974–5975.
´ ´
3 (a) C. Mukai, T. Hirose, S. Teramoto and S. Kitagaki, Tetrahe-
dron, 2005, 61, 10983–10994; (b) C. Mukai, F. Inagaki, T. Yoshida,
K. Yoshitani, Y. Hara and S. Kitagaki, J. Org. Chem., 2005, 70,
7159–7171; (c) K. M. Brummond, D. P. Curran, B. Mitasev and S.
Fischer, J. Org. Chem., 2005, 70, 1745–1753; (d) H. Cao, S. G. Van
Ornum, J. Deschamps, J. Flippen-Anderson, F. Laib and J. M.
Cook, J. Am. Chem. Soc., 2005, 127, 933–943.
4 (a) K. H. Park, S. U. Son and Y. K. Chung, Org. Lett., 2004, 6,
1183–1186; (b) K. H. Park, S. U. Son and Y. K. Chung, Adv.
Synth. Catal., 2005, 347, 854–866; (c) K. H. Park, S. U. Son and Y.
K. Chung, Chem. Commun., 2003, 1898–1899.
5 J. H. Park, S. Y. Kim, S. M. Kim and Y. K. Chung, Synlett, 2007,
453–459.
Scheme 4 Proposed mechanism.
6 For review, see: (a) A. S. K. Hashmi, Angew. Chem., Int. Ed., 2000,
39, 3590–3593. For recent papers, see: (b) M. Kajitani, I. Kamiya,
A. Nomoto, N. Kihara and A. Ogawa, Tetrahedron, 2006, 62,
6355–6360(c) D. Regas, J. M. Ruiz, M. M. Afonso and J. A.
Palenzuela, J. Org. Chem., 2006, 71, 9153–9164(d) P. A. Wender,
M. P. Croatt and N. M. Deschamps, Angew. Chem., Int. Ed., 2006,
45, 2459–2462.
7 (a) D. J. Pasto, N.-Z. Huang and C. W. Eigenbrot, J. Am. Chem.
Soc., 1985, 107, 3160; (b) D. J. Pasto and N.-Z. Huang, Organo-
metallics, 1985, 4, 1386.
8 (a) S.-K. Kang, T.-G. Baik, A. N. Kulak, Y.-H. Ha, Y. Lim and J.
Park, J. Am. Chem. Soc., 2000, 122, 11529–11530; (b) S. Ma, P. Lu,
L. Lu, H. Hou, J. Wei, Q. He, Z. Gu, X. Jiang and X. Jin, Angew.
Chem., Int. Ed., 2005, 44, 5275–5278; (c) X. Jiang, X. Cheng and S.
Ma, Angew. Chem., Int. Ed., 2006, 45, 8009–8013.
formation of a bis-p-complex II in which p-bond formation
occurs around the unsubstituted double bonds of the allenes.
Coupling in II occurs to produce apparently only III. Carbo-
nylation of III produces IV which undergoes a 1,3-hydrogen
shift to produce the product, b. The hydrogen shift occurs to
the carbon with less substituents, since a substituent on the
carbon is believed to restrict the shift of a hydrogen. Having
stated this, it is acknowledged that this rationalisation does
not explain the regioselectivity observed in the formation of
10b from substrate 10a, where the hydrogen shift in both
possible directions would be to a carbon with only an
9 P. Lu and S. Ma, Org. Lett., 2007, 9, 2095–2097.
ꢀc
This journal is The Royal Society of Chemistry 2008
2390 | Chem. Commun., 2008, 2388–2390