10.1002/anie.202009625
Angewandte Chemie International Edition
COMMUNICATION
alkynes (2p) were also tolerated in this cobalt-catalyzed
hydroboration protocol, albeit with inverted α: selectivity. In
addition, compound -3p was obtained as the major product
from the catalytic conversion of 3-phenyl-1-propyne with
pinacolborane, demonstrating the tendency of propargylic
substrates to form the respective internal alkene derivatives (see
SI for details).
Acknowledgements
We acknowledge the award of a predoctoral fellowship to V. V.
from the Landesgraduiertenförderung (LGF Funding Program of
the state of Baden-Württemberg) and generous funding by the
University of Heidelberg as well as the Deutsche
Forschungsgemeinschaft (DFG-Ga488/9-2).
Keywords: cobalt • T-shaped complex • alkynes • pincer ligand
• alkenyl boronates
[1]
[2]
(a) J. V. Obligacion, P. J. Chirik, Nat. Rev. Chem. 2018, 2, 15–34; (b)
A. Fürstner, ACS Cent. Sci. 2016, 2, 778–789.
(a) A. Mukherjee, D. Milstein, ACS Catal. 2018, 8, 11435–11469; (b)
V. Papa, K. Junge, M. Beller, Chem. Eur. J. 2019, 25, 122–143; (c) P.
Gandeepan, C. H. Cheng, Acc. Chem. Res. 2015, 48, 1194–1206.
(a) K. Ding, W. W. Brennessel, P. L. Holland, J. Am. Chem. Soc.
2009, 131, 10804–10805; (b) S. Kuriyama, K. Arashiba, H. Tanaka, Y.
Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Angew. Chem.
Int. Ed. 2016, 55, 14291–14295; (c) V. M. Krishnan, H. D. Arman, Z.
J. Tonzetich, Dalt. Trans. 2018, 47, 1435–1441; (d) L. M. Guard, T. J.
Hebden, D. E. Linn, D. M. Heinekey, Organometallics 2017, 36,
3104–3109; (e) L. S. Merz, C. K. Blasius, H. Wadepohl, L. H. Gade,
Inorg. Chem. 2019, 58, 6102–6113.
[3]
[4]
(a) G. Zhang, K. V. Vasudevan, B. L. Scott, S. K. Hanson, J. Am.
Chem. Soc. 2013, 135, 8668–8681; (b) C. Chen, T. R. Dugan, W. W.
Brennessel, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2014, 136,
945–955.
[5]
[6]
[7]
H. Ben-Daat, C. L. Rock, M. Flores, T. L. Groy, A. C. Bowman, R. J.
Trovitch, Chem. Commun. 2017, 53, 7333–7336.
Scheme 5. Top: Substrate scope of the cobalt-catalyzed α-selective
hydroboration of terminal alkynes. Reaction conditions: 300 μmol alkyne,
600 μmol HBPin, 0.5 mol% 1a. [a] α:-(E) ratio was determined by 1H NMR
spectroscopy before purification; estimated error: ±2%. [b] Yield of enriched α-
product. [c] 1 mol% catalyst loading. [d] Yield of isomer mixture. Bottom:
Formal synthesis of Bexarotene by cobalt-catalyzed α-selective hydroboration.
(a) W. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 2019, 119, 2876−
2953; (b) P. J. Chirik, R. H. Morris, Acc. Chem. Res. 2015, 48, 2495.
(a) L. Roy, M. H. Al-Afyouni, D. E. Derosha, B. Mondal, I. M. Dimucci,
K. M. Lancaster, J. Shearer, E. Bill, W. W. Brennessel, F. Neese, et
al., Chem. Sci. 2019, 10, 918–929; (b) T. R. Dugan, X. Sun, E. V.
Rybak-Akimova, O. Olatunji-Ojo, T. R. Cundari, P. L. Holland, J. Am.
Chem. Soc. 2011, 133, 12418–12421; (c) X. Hu, I. Castro-Rodriguez,
K. Meyer, J. Am. Chem. Soc. 2004, 126, 13464–13473; (d) C. Jones,
C. Schulten, R. P. Rose, A. Stasch, S. Aldridge, W. D. Woodul, K. S.
Murray, B. Moubaraki, M. Brynda, G. La Macchia, et al., Angew.
Chem. Int. Ed. 2009, 48, 7406–7410.
The facile access to the respective α-isomers in the case of aryl
alkynes prompted us to apply this cobalt-based method in the
synthesis of a biologically active compound with the given
structural core motif (Scheme 5, bottom). Reacting the readily
accessible alkyne 2q in the presence of precatalyst 1a with
pinacolborane yielded the borylated alkene 3q in a selectivity of
97:3, allowing for the isolation of the 1,1-disubstituted alkene α-
3q in 58% yield. Following a literature procedure,[13] this
compound can be converted within two steps into Bexarotene, a
pharmaceutical for the treatment of cutaneous T-cell
lymphomas.[29]
In conclusion, the boxmi-cobalt(II) alkyl complexes
effectively catalyze the Markovnikov-selective hydroboration of
terminal alkynes, furnishing the respective branched alkenyl
boronate esters in moderate to good yields (α: ratio up to 97:3).
The facile accessibility of a coordinatively unsaturated cobalt(I)
compound demonstrates the marked one-electron redox
chemistry 3d metal complexes, an off-cycle reactivity in the case
at hand but opening up new perspectives for future applications
in homogeneous catalysis.
[8]
(a) H. Zhong, M. R. Friedfeld, P. J. Chirik, Angew. Chem. 2019, 131,
9292–9296; (b) C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel,
B. Q. Mercado, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2015,
137, 13244–13247; (c) K. Tokmic, C. R. Markus, L. Zhu, A. R. Fout, J.
Am. Chem. Soc. 2016, 138, 11907–11913; (d) Z. Mo, J. Xiao, Y. Gao,
L. Deng, J. Am. Chem. Soc. 2014, 136, 17414–17417.
[9]
(a) J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 2018, 36, 1075–1109; (b)
H. Wen, G. Liu, Z. Huang, Coord. Chem. Rev. 2019, 386, 138–153.
(a) J. Carreras, A. Caballero, P. J. Pérez, Chem. Asian J. 2019, 14,
329–343; (b) H. Yoshida, ACS Catal. 2016, 6, 1799–1811.
J. V. Obligacion, J. M. Neely, A. N. Yazdani, I. Pappas, P. J. Chirik, J.
Am. Chem. Soc. 2015, 137, 5855–5858.
[10]
[11]
[12]
G. Zhang, S. Li, J. Wu, H. Zeng, Z. Mo, K. Davis, S. Zheng, Org.
Chem. Front. 2019, 6, 3228–3233.
This article is protected by copyright. All rights reserved.