C O M M U N I C A T I O N S
Table 2. Asymmetric Hydrogenation of Cinnamic Acid Derivativesa
the optimal conditions, different tiglic acid derivatives were
hydrogenated to produce the corresponding saturated acids in
excellent enantioselectivities (Table 3). A higher catalyst loading
was needed when a bulky group was introduced into either the
R-position or ꢀ-position of tiglic acid.
In summary, the first highly enantioselective Ir-catalyzed hy-
drogenation of R,ꢀ-unsaturated carboxylic acids was developed by
using SIPHOX ligands. The extremely high activity, enantioselec-
tivity, broad substrate scope, and mild reaction conditions demon-
strated that the Ir-SIPHOX were excellent catalysts for the synthesis
of enantiopure carboxylic acids.
Acknowledgment. This work was supported by National
Natural Science Foundation of China (20702025, 20532010,
20721062), the Major Basic Research Development Program
(2006CB806106), and “111” Project of the Ministry of Education
of China (B06005). Dedicated to Prof. Xiyan Lu on the occasion
of his 80th birthday.
entry
Ar
R
time
yield (%)
ee (%)
TOF (h-1
)
1
2
3
4
5
6
7
8
Ph (2a)
Me 30 min
Me 40 min
Me 40 min
Me 40 min
99
97
98
98
98
99
97
97
98
97
97
97
98
96
98
97
95
99.2 (S)
99
99
99
99
98
99
96
99
98 (S)
99
98 (S)
97
99
98
800
600
600
600
686
686
686
40
800
800
800
800
400
50
2-MeC6H4 (2b)
3-MeC6H4 (2c)
4-MeC6H4 (2d)
2-OMeC6H4 (2e) Me 35 min
3-OMeC6H4 (2f) Me 35 min
4-OMeC6H4 (2g) Me 35 min
2-ClC6H4 (2h)
3-ClC6H4 (2i)
4-ClC6H4 (2j)
3-BrC6H4 (2k)
4-BrC6H4 (2l)
Me 10 h
9
Me 30 min
Me 30 min
Me 30 min
Me 30 min
10
11
12
13
14
15
16
4-CF3C6H4 (2m) Me 1 h
2-naphthyl (2n)
furan-2-yl (2o)
Ph (2p)
Me 8 h
Me 18 h
iPr 3 h
Ph 5 h
22
133
20
Supporting Information Available: Details of experimental pro-
cedures, the synthesis and analysis data of catalysts, and the analysis
data of ee values of products. This material is available free of charge
99
94
17b Ph (2q)
a Reaction conditions and analysis are the same as those of Table 1,
entry 6. Full conversions were obtained for all cases. b S/C ) 100.
References
Scheme 2
(1) (a) Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds. ComprehensiVe
Asymmetric Catalysis; Springer: Berlin, 1999. (b) Blaser, H.-U., Schmidt,
E., Eds. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions Wiley-VCH: Weinheim, Germany, 2004.
(2) For a review, see: (a) Lednicer, D.; Mitscher, L. A. In The Organic
Chemistry of Drug Synthesis; Wiley: New York, 1977 and 1980; Vols. 1
and 2. For selected examples, see: (b) Lu, Y.; Nguyen, T. M.-D.;
Weltrowska, G.; Berezowska, I.; Lemieux, C.; Chung, N. N.; Schiller, P. W.
J. Med. Chem. 2001, 44, 3048–3053. (c) Churcher, I.; Ashton, K.; Butcher,
J. W.; Clarke, E. E.; Harrison, T.; Lewis, H. D.; Owens, A. P.; Teall, M. R.;
Williams, S.; Wrigley, J. D. J. Bioorg. Med. Chem. Lett. 2003, 13, 179–
183. (d) Henke, B. R. J. Med. Chem. 2004, 47, 4118–4127. (e) Kasuga, J.;
Makishima, M.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. Lett. 2006,
16, 554–558.
Table 3. Asymmetric Hydrogenation of Tiglic Acid Derivativesa
(3) (a) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem.
1987, 52, 3176–3178. (b) Uemura, T.; Zhang, X.; Matsumura, K.; Sayo,
N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Chem.
1996, 61, 5510–5516. (c) Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolo`,
F. J. Org. Chem. 2000, 65, 2043–2047. (d) Pai, C.-C.; Lin, C.-W.; Lin,
C.-C.; Chen, C.-C.; Chan, A. S. C.; Wong, W. T. J. Am. Chem. Soc. 2000,
122, 11513–11514. (e) Maligres, P. E.; Krska, S. W.; Humphrey, G. R.
Org. Lett. 2004, 6, 3147–3150. (f) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang,
L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118–1121. (g) Cheng,
X.; Xie, J.-H.; Li, S.; Zhou, Q.-L. AdV. Synth. Catal. 2006, 348, 1271–
1276. (h) Qiu, L.; Li, Y.-M.; Kwong, F. Y.; Yu, W.-Y.; Fan, Q.-H.; Chan,
A. S. C. AdV. Synth. Catal. 2007, 349, 517–520.
entry
R1
R2
S/C
time (h)
yield (%)
ee (%)
1
2
3
4
5
6
Me
Et
Me (6a)
Me (6b)
Me (6c)
Me (6d)
Et (6e)
400
200
200
100
100
200
0.5
18
18
18
18
92
93
89
97
89
92
99.1 (S)
98 (S)
99 (S)
90
99.4 (S)
98 (R)
nPr
iBu
nPr
Me
nPr (6f)
18
(4) (a) Yamada, I.; Yamaguchi, M.; Yamagishi, T. Tetrahedron: Asymmetry
1996, 7, 3339–3342. (b) Houpis, I. N.; Patterson, L. E.; Alt, C. A.; Rizzo,
J. R.; Zhang, T. Y.; Haurez, M. Org. Lett. 2005, 7, 1947–1950. (c) Co,
T. T.; Shim, S. C.; Cho, C. S.; Kim, T.-J.; Kang, S. O.; Han, W.-S.; Ko,
J.; Kim, C.-K. Organometallics 2005, 24, 4824–4831. (d) Hoen, R.;
Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.; Meetsma, A.;
Tiemersma-Wegman, T. D.; de Vries, A. H. M.; de Vries, J. G.; Feringa,
B. L. Angew. Chem., Int. Ed. 2005, 44, 4209–4212. (e) Chen, W.;
McCormack, P. J.; Mohammed, K.; Mbafor, W.; Roberts, S. M.; Whittall,
J. Angew. Chem., Int. Ed. 2007, 46, 4141–4144.
(5) (a) Blaser, H.-U. AdV. Synth. Catal. 2002, 344, 17–31. (b) Roseblade, S. J.;
Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402–1411. (c) Zhou, Y.-G. Acc.
Chem. Res. 2007, 40, 1357–1366.
(6) Scrivanti, A.; Bovo, S.; Ciappa, A.; Matteoli, U. Tetrahedron Lett. 2006,
47, 9261–9265.
(7) Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc.
2006, 128, 12886–12891.
a Reaction conditions are the same as those of Table 1, entry 6,
unless otherwise indicated. Full conversions were obtained for all cases.
efficiency in the asymmetric hydrogenation of R-methylcinnamic
acid derivatives.3,4
To demonstrate the potential of this highly efficient catalytic
asymmetric reaction, we carried out the hydrogenation of R-iso-
propylcinnamic acid derivative 4 to prepare the acid (R)-5, which
is the key intermediate for the synthesis of the new blood-pressure-
lowering drug Aliskiren.11 The compound 4 was successfully
hydrogenated by catalyst (Sa)-1h, which had no substituent on the
oxazoline ring and gave the best performance in this reaction. The
carboxylic acid (R)-5 was attained in high yield with 98% and 95%
ee at catalyst loadings of 0.017 mol % (S/C ) 6000) and 0.01 mol
% (S/C ) 10 000), respectively (Scheme 2). This primary result
was superior to those reported previously.4e,11c,d
Further studies revealed that the iridium complexes 1 were also
suitable catalysts for the hydrogenation of tiglic acid and its
derivatives 6. In this reaction, the (Sa,S)-1f with an isopropyl group
on the oxazoline ring was the most efficent catalyst and Cs2CO3
was the most suitable additive for achieving the best result.12 Under
(8) For comparison of anions of catalysts, see Supporting Information.
(9) (a) Yamamoto, K.; Ikeda, K.; Yin, L. K. J. Organomet. Chem. 1989, 370,
332. (b) Sun, X.; Zhou, L.; Wang, C.-J.; Zhang, X. Angew. Chem., Int. Ed.
2007, 46, 2623. (c) Fox, M. E.; Jackson, M.; Lennon, I. C.; Klosin, J.;
Abboud, K. A. J. Org. Chem. 2008, 73, 784.
(10) For experiment of amount of triethylamine, see Supporting Information.
(11) (a) Herold, P.; Stutz, S.; Spindler, F. WO 02/02508, 2002. (b) Herold, P.;
Stutz, S. WO 02/08172, 2002. (c) Sturm, T.; Weissensteiner, W.; Spindler,
F. AdV. Synth. Catal. 2003, 345, 160–164. (d) Boogers, J. A. F.; Felfer,
U.; Kotthaus, M.; Lefort, L.; Steinbauer, G.; de Vries, A. H. M.; de Vries,
J. G. Org. Process Res. DeV. 2007, 11, 585–591.
(12) For comparison of catalysts and additives, see Supporting Information.
JA802399V
9
J. AM. CHEM. SOC. VOL. 130, NO. 27, 2008 8585