Prod. Rep., 2007, 24, 931; K. Nagasawa and Y. Hashimoto, Chem.
Rec., 2003, 3, 201; Z. D. Aron and L. E. Overman, Chem.
Commun., 2004, 253Tetrodotoxin, Saxitoxin and the Molecular
Biology of the Sodium Channel, eds. C. Y. Kao and S. R. Levinson,
Ann. New York Acad. Sci., 1986, vol. 479.
2 T. Ishikawa and T. Isobe, Chem.–Eur. J., 2002, 8, 553; J. Shen,
T. T. Nguyen, Y.-P. Goh, W. Ye, X. Fu, J. Xu and C.-H. Tan, J.
Am. Chem. Soc., 2006, 128, 13692.
3 P. J. Bailey and S. Pace, Coord. Chem. Rev., 2001, 214, 91; M. P.
Coles, Dalton Trans., 2006, 985.
4 A. Echavarren, A. Galan, J.-M. Lehn and J. de Mendoza, J. Am.
´
Fig. 1 Mechanistic key step of Pd oxidation and carbon amination.
Chem. Soc., 1989, 111, 4994.
5 M. Kim, J. V. Mulcahy, C. G. Espino and J. Du Bois, Org. Lett.,
2006, 8, 1073.
in the final amination. We have previously disclosed a syn-
aminopalladation15,16 for related urea groups6 that should be
even more pronounced for the present guanidines with their
high metal-coordination ability.3 Such a resulting alkyl palla-
dium(II) intermediate has been suggested to undergo reductive
C–N bond formation upon transient palladium oxidation17
(Fig. 1).
6 J. Streuff, C. H. Hovelmann, M. Nieger and K. Muniz, J. Am.
¨
¨
Chem. Soc., 2005, 127, 14586; K. Muniz, C. H. Hovelmann and J.
Streuff, J. Am. Chem. Soc., 2008, 130, 763.
7 K. Muniz, J. Am. Chem. Soc., 2007, 129, 14542.
8 K. Muniz, J. Streuff, C. H. Hovelmann and A. Nu´
nez, Angew.
¨
Chem., Int. Ed., 2007, 46, 7125.
9 K. Muniz, C. H. Hovelmann, E. Campos-Go
M. Gonzalez, Jan Streuff and M. Nieger, Chem. Asian J., DOI:
´
´
mez, J. Barluenga, J.
¨
Since the reductive amination proceeds via nucleophilic
displacement, this step requires an inversion of configuration
as noted from eqn (7). This mechanistic proposal is strongly
supported by the observation that the carbamate groups are
essential for this second amination to proceed, as free guani-
dine with its less nucleophilic nitrogen atoms leads exclusively
to aminochlorination product 9 (eqn (8)). Finally, a stronger
oxidant such as PhI(OAc)2 induces aminoacetoxylation pro-
duct 10 (eqn (9))18 from a discrete Pd(IV) intermediate19 as
previously observed for related sulfamide groups.8 Hence, only
the palladium(II)/copper chloride pairing provides the required
balanced conditions that allow palladium oxidation and nu-
cleophilic amination to proceed with complete chemoselectivity
for catalytic room-temperature guanidination of alkenes.
In summary, we have accomplished an oxidative guanidine
transfer to alkenes with significant operational simplicity that
closes a methodological gap in the synthesis of cyclic guani-
dines. This reaction also represents the first practical synthesis
of piperidine-annelation in catalytic diamination reactions. It
further enlarges the available oxidative diamination protocols
to environmentally benign copper chloride reoxidation condi-
tions with unprecedented selectivity.
10.1002/asia.200700373.
10 For a copper-catalysed diamination: B. Zhao, W. Yuan, H. Du
and Y. Shi, Org. Lett., 2007, 9, 4943.
11 For a copper-mediated diamination: T. P. Zabawa, D. Kasi and S.
R. Chemler, J. Am. Chem. Soc., 2005, 127, 11250; T. P. Zabawa
and S. R. Chemler, Org. Lett., 2007, 9, 2035.
12 Synthesised according to: K. Feichtinger, H. L. Sings, T. J. Baker,
K. Matthews and M. Goodman, J. Org. Chem., 1998, 63, 8432; K.
Feichtinger, C. Zapf, H. L. Sings and M. Goodman, J. Org. Chem.,
1998, 63, 3804.
13 We are currently investigating the influence of anion nature on
Pd(II)/Cu(II) combined systems in diamination reactions. Prelimin-
ary results showed no influence on the hydration grade of the
copper salt as use of unhydrous and hydrated copper chloride led
to identical reaction outcome (we thank a referee for drawing this
possibility to our attention).
14 A. Lei, X. Lu and G. Liu, Tetrahedron Lett., 2004, 45, 1785;
M. R. Manzoni, T. P. Zabawa, D. Kasi and S. R. Chemler,
Organometallics, 2004, 23, 5618; P. Szolcsanyi and T.
´
Gracza, Tetrahedron, 2006, 62, 8498; Y. Tamaru, M. Hojo, H.
Higashimura and Z. Yoshida, J. Am. Chem. Soc., 1988, 110,
3994; G. Li, S. R. S. S. Kotti and C. Timmons, Eur. J. Org. Chem.,
2007, 2745.
15 A. Minatti and K. Muniz, Chem. Soc. Rev., 2007, 36, 1142.
16 G. Liu and S. S. Stahl, J. Am. Chem. Soc., 2006, 128, 7179; G. Liu
and S. S. Stahl, J. Am. Chem. Soc., 2007, 129, 6328.
17 For the conceptual introduction of transient palladium oxidation
with CuCl2: H. Stangl and R. Jira, Tetrahedron Lett., 1970, 11,
3589; O. Hamed and P. M. Henry, Organometallics, 1998, 17,
5184Palladium Catalyzed Oxidation of Hydrocarbons, ed. P. M.
Henry, Reidel, Dordrecht, 1980.
This work was supported by the Fonds der Chemischen
Industrie and by the Agence Nationale de la Recherche.
18 E. J. Alexanian, C. Lee and E. J. Sorensen, J. Am. Chem. Soc.,
2005, 127, 7690.
19 A. J. Canty, Acc. Chem. Res., 1992, 25, 83; A. R. Dick,
J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc., 2005, 127,
12790.
Notes and references
1 Selected reviews and accounts: R. G. S. Berlinck and M. H.
Kossuga, Nat. Prod. Rep., 2005, 22, 516; S. M. Weinreb, Nat.
ꢀc
This journal is The Royal Society of Chemistry 2008
2336 | Chem. Commun., 2008, 2334–2336