V. S. Prasada Rao Lingam et al. / Tetrahedron Letters 49 (2008) 4260–4264
4263
R3
R1
R3 Ar
References and notes
R2
R2
[3,3]-shift
C
1. (a) Assens, J.-L.; Bernhart, C.; Cabanel-Haudricourt, F.; Gautier, P. N.; Dino. WO
2002, 016339; Chem. Abstr. 2002, 136, 216637.; (b) Carlsson, B.; Singh, B. N.;
Temciue, M.; Nilsson, S.; Li, Y.-L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45,
623–630; (c) Norinder, U.; Bajorath, J.; Stearns, J. WO 1992, 20 331; Chem.
Abstr. 1993, 118, 212874t; (d) Scherrer; R.A. US Patent 3920828, 1975; Chem
Abstr. 1976, 84, 889985e.
2. (a) Schneiders, G. E.; Stevenson, R. J. Org. Chem. 1979, 44, 4710–4711; (b)
Huang, K.-S.; Lin, M.; Cheng, G.-F. Phytochemistry 2001, 58, 357–362; (c)
Shirota, O.; Pathak, V.; Sekita, S.; Stake, M.; Nagashima, Y.; Hirayama, Y.;
Hakamata, Y.; Haysahi, T. J. Nat. Prod. 2003, 66, 1128–1131; (d) Okamoto, Y.;
Ojika, M.; Sakagami, Y. Tetrahedron Lett. 1999, 40, 507–510; Okamoto, Y.; Ojika,
M.; Suzuki, S.; Murakami, M.; Sakagami, Y. Bioorg. Med. Chem. 2001, 9, 179–
183; (e) Donnelly, D. M. X.; O’Cridain, T.; O’Sullivan, M. J. Chem. Soc., Chem.
Commun. 1981, 1254–1255.
3. Boyle, S.; Guard, S.; Higginbottom, M.; Horwell, D. C.; Howson, W.; McKnight,
A. T.; Martin, K.; Pritchard, M. C.; O’Toole, J.; Raphy, J.; Rees, D. C.; Roberts, E.;
Watling, K. J.; Woodruff, G. N.; Hughes, J. Bioorg. Med. Chem. 1994, 2, 357–370.
4. (a) Kiyama, R.; Homna, T.; Hayashi, K.; Ogawa, M.; Hara, M.; Fujimoto, M.;
Fujishita, T. J. Med. Chem. 1995, 38, 2728–2741; (b) Yoo, S.; Kim, S.-H.; Lee, S.-
H.; Kim, N.-J.; Lee, D.-W. Bioorg. Med. Chem. 2000, 8, 2311–2316.
5. (a) Gubun, J.; de Vogelaer, H.; Inion, H.; Houben, C.; Lucchetti, J.; Mahaux, J.;
Rosseels, G.; Peiren, M.; Clinat, M.; Polster, P.; Chatelain, P. J. Med. Chem. 1993,
36, 1425–1433; (b) Kozikowsky, A. E. WO 2006, 010008; Chem. Abstr. 2006, 144,
164278.
6. Ohemeng, K. A.; Apollina, M. A.; Nguyen, V. N.; Schwender, C. F.; Singer, M.;
Steber, M.; Araseli, J.; Argentieri, D.; Hageman, W. J. Med. Chem. 1994, 37, 3663–
3667.
7. (a) Stephens, R. D.; Castro, C. E. Synthesis 1963, 3313–3315; (b) Castro, C. E.;
Gaughan, E. J.; Owsley, D. C. J. Org. Chem. 1966, 31, 4071–4078; (c) Barton, T. J.;
Groh, B. L. J. Org. Chem. 1985, 50, 158–166; (d) Villemin, D.; Goussu, D.
Heterocycles 1989, 29, 1255–1261; (e) Yue, D.; Larock, R. C. J. Org. Chem. 2002,
67, 1905–1909; (f) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org.
Chem. 1995, 60, 3270–3271; (g) Bernini, R.; Caccha, S.; Salve, I. D.; Fabriza, G.
Synthesis 2007, 6, 873–882.
8. (a) Hosokawa, T.; Maeda, K.; Koga, K.; Moritani, I. Tetrahedron Lett. 1973, 14,
739–740; (b) Casiraghi, G.; Casnati, G.; Pugli, G.; Sartori, G.; Terenghi, C.
Synthesis 1977, 122–123; (c) Hosokawa, T.; Miyagi, S.; Murahashi, S.-I.; Sonodo,
A. J. Chem. Soc., Chem. Commun. 1978, 687–688.
9. (a) Ledoussal, B.; Gorgues, A.; Le Coq, A. J. Chem. Soc., Chem. Commun. 1986,
171–172; (b) Ledoussal, B.; Gorgues, A.; Le Coq, A. Tetrahedron 1987, 43, 5841–
5852.
10. (a) Sheradsky, T. J. Heterocycl. Chem. 1967, 4, 413–414; (b) Kaminsky, D.;
Shavel, J. J.; Meltzer, R. I. Tetrahedron Lett. 1967, 8, 859–861; (c) Mooradian, A.;
Dupoint, P. E. Tetrahedron Lett. 1967, 8, 2867–2870; (d) Bender, D. R.; Hearst, J.
E.; Rapoport, H. J. Org. Chem. 1979, 44, 2176–2180; (e) Alemagna, A.; Baldoli, C.;
Buttero, P. D.; Licandro, E.; Maiorana, S. J. Chem. Soc., Chem. Commun. 1985,
417–418.
11. (a) Tarbell, D. S.; Carman, R. M.; Chapman, D. D.; Cremer, S. E.; Cross, A. D.;
Huffman, K. R.; Kunstmann, M.; McCorkindale, N. J.; McNally, J. G.; Rosowsky,
A.; Varino, F. H. L.; West, R. L. J. Am. Chem. Soc. 1961, 83, 3096–3113; (b)
Macleod, J. K.; Worth, B. R. Tetrahedron Lett. 1972, 13, 237–240.
12. (a) Horaguchi, T.; Matsuda, S.; Tanemura, K.; Suzuki, T. J. Heterocycl. Chem.
1987, 24, 965–969; (b) Brady, W. T.; Gu, Y.-Q. J. Heterocycl. Chem. 1988, 25,
969–971.
13. Takahata, T.; Anazawa, A.; Moriyama, K.; Yamazaki, Y. J. Chem. Soc., Perkin
Trans. 1 1987, 1501–1504.
14. Rama Rao, V. V. V. N. S.; Reddy, G. V.; Yadla, R.; Narsaiah, B.; Rao, P. S. Arkivoc
2005, iii, 211–220.
15. Spyroudis, S. P. J. Org. Chem. 1986, 51, 3453–3456.
16. Ishii, H.; Ishikawa, T.; Takeda, S.; Ueki, S.; Suzuki, M. Chem. Pharm. Bull. 1992,
40, 1148–1153.
CH2
C Ar
OCH2C
Ar
O
R1
4
A
R3
R1
R3 Ar
R2
R2
ring closure
C
CH3
O
CH2
OH
R1
5
B
Scheme 3. Proposed mechanism for the formation of benzo[b]furans.
of solvent resulted in a tarry material and no identifiable product
was formed in the mixture. Reaction of 4a in polyethylene glycol21
(PEG) up to 220 °C resulted in recovery of the starting material.
Reactions using Hg (OCOCF3)2 in chloroform did not proceed at
all and the starting material remained intact even after 12 h of
reflux.22 Reactions under Lewis acid (AgBF4)23 catalysis resulted
in a complex mixture. The caesium chloride (CsCl)24 catalyzed
reaction in N,N-diethylaniline (N,N-DEA) resulted in an unidentifi-
able less polar product along with the unreacted alkyne ether 4a.
The reaction catalyzed by caesium fluoride (CsF) in N,N-DEA25
resulted in the formation of the desired benzo[b]furan 5a in a
65% isolated yield.
The generality of this approach was studied using selectively
substituted phenols 1 and aryl iodides 3 as shown in Table 1. To
our delight, we found that the present method tolerated a wide
range of substituents on both of the aryl rings. In addition to this,
it was also observed that electron deficient phenols showed excel-
lent reactivity and formed products in shorter reaction times (en-
tries 10–18), whilst prolonged reaction times were required for
electron rich phenols (entries 1–9). Even sterically demanding,
ortho-substituted aryl iodides (entries 4 and 7) delivered good
yields of benzo[b]furans 5 under these conditions.
The general transition states involved in the thermolytic Claisen
rearrangement and cyclization of aryl prop-2-ynyl ether 4 are
shown in Scheme 3.23,24 Intermediate 4 on [3,3]-sigmatropic rear-
rangement gives the allenyl dienone A, which on enolization gives
thermodynamically more stable phenol B. The phenoxide anion
formed in the presence of caesium fluoride would cyclize to
benzo[b]furan 5. No trace of dihydro-2H-1-benzopyran was de-
tected in all the cases studied.21
In conclusion, we have developed a novel three-step procedure
for the synthesis of highly functionalized 2-methyl-3-aryl-
benzo[b]furans from commercially available, suitably functional-
ized phenols and substituted aryl iodides. The present method
can be utilized to synthesize various functionalized analogues of
Isoparvifuran,2b,c a known anti-fungal agent. The present method
has several advantages: simple reaction conditions and experimen-
tal simplicity combined high functional group tolerance. We
believe that this methodology will be a valuable addition to the
existing methods in the field of benzo[b]furan synthesis which
allows the preparation of annelated benzofuran analogues for bio-
logical screening. Further work is in progress towards generating
synthetic routes for the recently isolated and naturally occurring
benzo[b]furan compounds from Dalbergia Cochinchinensis Pierre
(Leguminosae)2c,26 and the details will be published elsewhere.
17. (a) Sonagashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–
4470; (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874–922. and
references cited therein.
18. Typical procedure for the Sonogashira coupling: Method A for compounds 4a–i: To
a
solution of 2f (1.0 g, 4.974 mmol) and 4-iodoacetophenone 3i (1.23 g,
4.999 mmol) and Pd(PPh3)2Cl2 (35 mg, 0.049 mmol) in triethylamine (5.0 mL)
was added CuI (28.5 mg, 0.149 mmol) under nitrogen atmosphere. The
a
reaction mixture was stirred at room temperature for 3 h. The mixture was
diluted with EtOAc (50 mL), washed with water (3 Â 50 mL) and dried over
anhydrous Na2SO4. The residue obtained after evaporation of the solvent was
purified by silica gel column chromatography using 20% EtOAc in petroleum
ether to give 1.45 g (91%) of 4i as an off-white solid; mp 80–83 °C; IR (KBr)
3069, 2288, 1678, 1585, 1482, 1381, 1265, 832 cmÀ1 1H NMR (300 MHz,
;
CDCl3) d 2.58 (s, 3H), 4.99 (s, 2H), 6.92 (dd, J = 1.8, 6.3 Hz, 1H), 7.13 (d,
J = 1.8 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.87 (d, J = 8.1 Hz,
2H); 13C NMR (75 MHz, CDCl3) d 26.6, 57.7, 85.6, 87.3, 114.7, 121.6, 122.2,
126.4 (2C), 128.0, 130.8, 131.8 (2C), 132.7, 136.5, 153.3, 196.9; MS m/z (+
cAPCI): 319.16 (M)+; Anal. Calcd for C17H12Cl2O2: C, 63.97; H, 3.79. Found: C,
63.94; H 3.83.
Acknowledgement
19. Method B: For entries 10–18, to a solution of compounds 2g–k (5 mmol) in dry
DMSO (20 mL) was added iodide (3) (5 mmol), (PPh3)4Pd (0.05 mmol) and CuI
(0.15 mmol) followed by triethylamine (7.5 mmol). The reaction mixture was
The authors thank Glenmark Pharmaceuticals Limited for grant-
ing permission to carry out the present research work.