Journal of the Iranian Chemical Society
9. J. Vicente, M.T. Chicote, I. Saura-Llamas, J. Turpin, J.J. Fer-
nandez-Baeza, Organomet. Chem. 333, 129 (1987)
10. J. Buckle, P.G. Harrison, T. King, J. Richards, J. Chem. Soc.
Chem. Commun. 1104 (1972)
larger the solvating ability perhaps react high powerfully
with the complexes to shape further stable solvated complex
11. G. I.Kawafune, Matsubayashi, Inorg. Chim. Acta. 70, 1 (1983)
12. J. Buckle, P.G. Harrison, J. Organomet. Chem. 49, C17 (1973)
13. J.A. Albanese, D.A. Staley, A.L. Rheingold, J.L. Burmeister,
Inorg. Chem. 29, 2209 (1990)
Conclusion
14. R. Uson, J. Forniés, R. Navarro, P. Espinet, C. Mendvil, J. Orga-
nomet. Chem. 290, 125 (1985)
The complexation reaction betwixt the HgI2, HgBr2, and
HgCl2 salts with the unsymmetrical phosphorus ylide,
CH3COCHP(p-tolyl)3 (Y), in binary THF–DMSO were
inspected by 31P NMR spectroscopy. In total instances
examined, the variation of 31P chemical shift with the the
[HgX2]/[Y] mole ratios indicated the formation of 1:1
complexes in all solvents. It was discovered that formation
of the resulting complexes is powerfully dependent upon
the amount of DMSO in the solution. In total instances,
the stability reduces significantly with increasing quan-
tity of DMSO in the solvent mixture. In total solutions,
the stability of total complexes increases in the order the
HgI2–Y < HgBr2–Y < HgCl2–Y. The stability constant of
complex results by the superposition of several factors
containing the extent of interaction of Hg(II) halides with
donor groups of the Y. The consonance between the phos-
phorus ylide and kind the counter anion depends to metal
ion. Hard–soft acid–base characters of the metal ion and
the donating groups of the phosphorus ylide. Solvation of
the resulting complex and desolvation of the Y and Mer-
curic cation. The two later factors causes being powerfully
dependent on the nature of solvents used. The enthalpy and
entropic values for the complexation reaction were acquired
from the temperature dependence of the stable constants. It
is obviously that, in total complexes, the resulting complex
is totally enthalpy stabilized nevertheless the T∆S unfair
contribution.
15. S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, S. Khani, M.
Bayat, H.R. Khavasi, Polyhedron. 27, 2015 (2008)
16. S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, S. Khani, M.
Bayat, H. Adams, M.D. Ward, Inorg. Chim. Acta. 362, 105
(2009)
17. S.J. Sabounchei, M. Panahimehr, H. Keypour, M.H. Zebarjadian,
J. Mol. Struct. 1040, 184 (2013)
18. S.J. Sabounchei, M. Pourshahbaz, M.H. Zebarjadian, H. Keypour,
M. Bordbar, J. Mol. Struct. 1034, 189 (2013)
19. S.J. Sabounchei, S. Salehzadeh, M. Hosseinzadeh, F. Akhlaghi,
H.R. Bagherjeri, Khavasi, Polyhedron 30, 2486 (2011)
20. R.K. Harris, B.E. Mann, NMR and The Periodic Table, (Aca-
demic, New York, 1978)
21. M. Kalyanasundari, K. Panchanatheswaran, W.T. Robinson, H.J.
Wen, J. Organomet. Chem. 491, 103 (1995)
22. J. Wennel, J. Klinowski, Fundamentals of Nuclear Magnetic Reso-
nance (Wiley, New York, 1993)
23. V. Gutmann, E. Wychera, Chem. Lett. 2, 257 (1966)
24. O.W. Kolling, Anal. Chem. 54, 260 (1982)
25. V. Gutmann, Electrochim. Acta 21, 661 (1976)
26. H. Keypour, M.H. Zebarjadian, S.J. Sabounchei, J. Iran. Chem.
Soc. 14, 464 (2014)
27. H. Keypour, M.H. Zebarjadian, M. Rezaeivala, M. Shamsipur,
H.R. Bijanzadeh, J. Solut. Chem. 14, 196 (2014)
28. H. Keypour, M.H. Zebarjadian, M. Rezaeivala, A. Afkhami, Mol.
Struct. 20, 796 (2014)
29. H. Keypour, M.H. Zebarjadian, M. Rezaeivala, M. Shamsipur, S.J.
Sabounchei, J. Iran. Chem. Soc. 10, 1137 (2013)
30. M. Irandoust, M. Shamsipur, H. Daraei, J. Incl. Phenom. Macro-
cycl. Chem. 66, 365 (2010)
31. M. Shamsipur, M. Irandoust, K. Alizadeh, V. Lippolis, J. Incl.
Phenom. Macrocycl. Chem. 59, 203 (2007)
32. M. Hasani, M. Irandoust, M. Shamsipur, Spectrochim. Acta. 63,
377 (2006)
33. M. Irandoust, M. Joshaghani, E. Rafiee, M. Pourshahbaz, Spec-
trochim. Acta. 74, 855 (2009)
34. M. Shamsipur, Irandoust, J. Solut. Chem. 37, 657 (2008)
35. V.A. Nicely, J.L. Dye, J. Chem. Educ. 48, 443 (1971)
36. R. Izatt, J. Bradshaw, K. Pawlak, R. Bruening, B. Tarbet, Chem.
Rev. 92, 1261 (1992)
References
1. Y. Shen, Acc. Chem. Res. 31, 584 (1998)
37. R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L. Bruening, Chem. Rev.
95, 2529 (1995)
2. D.E.C. Cobridge, Phosphorus an Outline of Chemistry, Biochem-
istry and Uses, 5 edn. (Elsevier, Amsterdam, 1995)
3. C. Puke, G. Erker, N.C. Aust, E.U. Wurthweine, R. Frohich, J.
Am. Chem. Soc. 120, 4863 (1998)
38. M. Shamsipur, J. Ghasemi, J. Incl. Phenom. 29, 157 (1995)
39. M. Shamsipur, B. Karkhaneei, A. Afkhami, J. Coord. Chem. 44,
23 (1998)
4. O.I. Kolodiazhnyi, Russ. Chem. Rev. 66, 224 (1997)
5. M. Kalyanasundari, K. Panchanatheswaran, W.T. Robinson, H.
Wen, J. Organomet. Chem. 491, 103 (1995)
40. M. Shamsipur, N. Alizadeh, J. Chin. Chem. Soc. 45, 241 (1998)
41. A.R. Fakhari, M. Shamsipur, J. Incl. Phenom. 32, 405 (1998)
42. M. Shamsipur, E. Karkhaneei, A. Afkhami, Polyhedron. 17, 3809
(1998)
6. J.A. Albanese, A.L. Rheingold, J.L. Burmeister, Inorg. Chim.
Acta 150, 213 (1988)
43. E. Karkhaneei, A. Afkhami, M. Shamsipur, Polyhedron. 15, 1989
(1996)
7. M.L. Illingsworth, J.A. Teagle, J.L. Burmeister, W.C. Fultz, A.I.
Rheingold, Organometallics 2, 1364 (1983)
44. E. Karkhaneei, J. Zolgharnein, A. Afkhami, M. Shamsipur, J.
Coord. Chem. 46, 1 (1998)
8. J. Vicente, M.T. Chicote, J. Fernandez-Baeza, J. Martin, I.
Saura-Llamas, J. Turpin, P.G. Jones, J. Organomet. Chem. 331,
409 (1987)
45. J. Kim, M. Shamsipur, S.Z. Huang, R.H. Huang, J.L. Dye, J. Phys.
Chem. A 103, 5615 (1999)
46. M. Shamsipur, T. Madrakian, Polyhedron. 19, 1681 (2000)
1 3