2-Amino-6-furan-2-yl-4-Substituted Nicotinonitriles
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 15 4455
(13) Alanine, A.; Anselm, L.; Steward, L.; Thomi, S.; Vifian, W.; Groaning,
M. D. Synthesis and SAR evaluation of 1,2,4-triazoles as A2A receptor
antagonists. Bioorg. Med. Chem. Lett. 2004, 14, 817–821.
(14) Baraldi, P. G.; Fruttarolo, F.; Tabirizi, M. A.; Preti, D.; Romagnoli,
R.; El-Kashef, H.; Moorman, A.; Varani, K.; Gessi, S.; Merighi, S.;
Borea, P. A. Design, Synthesis, and Biological Evaluation of C9- and
C2-Substituted Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as New
A2A and A3 Adenosine Receptors Antagonists. J. Med. Chem. 2003,
46, 1229–1241.
(15) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Monopoli,
A.; Varani, K.; Borea, P. A. 7-Substituted 5-Amino-2-(2-furyl)pyra-
zolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A Adenosine Receptor
Antagonists: A Study on the Importance of Modifications at the Side
Chain on the Activity and Solubility. J. Med. Chem. 2002, 45, 115–
126.
(16) Vu, C. B.; Pan, D.; Peng, B.; Sha, L.; Kumaravel, G.; Jin, X.; Phadke,
D.; Engber, T.; Huang, C.; Reilly, J.; Tam, S.; Petter, R. C. Studies
on adenosine A2a receptor antagonists: comparison of three core
heterocycles. Bioorg. Med. Chem. Lett. 2004, 14, 4831–4834.
(17) Weiss, S. M.; Benwell, K.; Cliffe, I. A.; Gillespie, R. J.; Knight, A. R.;
Lerpiniere, J.; Misra, A.; Pratt, R. M.; Revell, D.; Upton, R.; Dourish,
C. T. Discovery of nonxantine adenosine A2A receptor antagonists for
the treatment of Parkinson’s disease. Neurology 2003, 61, 101–106.
(18) Minetti, P.; Tinti, M. O.; Carminati, P.; Castorina, M.; Di Cesare,
M. A.; Di Serio, S.; Gallo, G.; Ghirardi, O.; Giorgi, F.; Giorgi, L.;
Piersanti, G.; Bartoccini, F.; Tarzia, G. 2-n-Butyl-9-methyl-8-
[1,2,3]triazolo-2-yl-9H-purine and Analogues as A2A Adenosine
Receptor Antagonists. Design, Synthesis, and Pharmacological Char-
acterization. J. Med. Chem. 2005, 48, 6887–6896.
cAMP assay. HEK293 cells expressing the human A2A
adenosine receptor were grown as a monolayer on 6 cm culture
plates. The cells were harvested and centrifuged two times for
5 min/1000 rpm. For cAMP production and determination, 7500
cells/well were used on 384-well plates. The cells were
incubated for 45 min at room temperature with either CGS21680
alone or together with compound 44 in different concentrations.
The assay medium also contained cilostamide (50 µM), rolipram
(50 µM), and adenosine deaminase (0.8 IU/mL). Incubation was
stopped with detection mix and antibody solution was added,
these two steps according to the instructions of the supplier.
The assay was performed with the Lance cAMP 384 kit from
Perkin-Elmer based on the competition of the sample’s cAMP
with a europium-labeled cAMP tracer complex for binding sites
on cAMP-specific antibodies labeled with Alexa Fluor dye.
Data Analysis. Ki values were calculated using a nonlinear
regression curve fitting program (GraphPad Prism 4.0, GraphPad
Software Inc., San Diego, CA). Ki values of radioligands were
1.6, 1.0, 1.3, and 5.0 nM for [3H]DPCPX, [3H]ZM 241385,
[3H]MRS1754, and [125I]AB-MECA, respectively.
Supporting Information Available: 1H NMR data of com-
pounds 1-16. Physical data and elemental analysis of the target
compounds 17-45. This material is available free of charge via
(19) Yang, M.; Soohoo, D.; Soelaiman, S.; Kalla, R.; Zablocki, J.; Chu,
N.; Leung, K.; Yao, L.; Diamond, I.; Belardinelli, L.; Shryock, J. C.
Characterization of the potency, selectivity, and pharmacokinetic
profile for six adenosine A2A receptor antagonists. Naunyn-Schmiede-
bergs Arch. Pharmacol. 2007, 375, 133–144.
References
(1) Moreau, J.-L.; Huber, G. Central adenosine A2A receptors: an overview.
Brain Res. ReV. 1999, 31, 65–82.
(20) Silverman, L. S.; Caldwell, J. P.; Greenlee, W. J.; Kiselgof, E.; Matasi,
J. J.; Tulshian, D. B.; Arik, L.; Foster, C.; Bertorelli, R.; Monopoli,
A.; Ongini, E. 3H-[1,2,4]-Triazolo[5,1-i]purin-5-amine derivatives as
adenosine A2A antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 1659–
1662.
(2) Xu, K.; Bastia, E.; Schwarzschild, M. Therapeutic potential of
adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol.
Ther. 2005, 105, 267–310.
(3) Jacobson, K. A.; Gao, Z.-G. Adenosine receptors as therapeutic targets.
Nat. ReV. Drug DiscoVery 2006, 5, 247–264.
(21) Spartan ’04; Wavefunction Inc.: Irvine, CA, 2005.
(22) Wei, J.; Wang, S.; Gao, S.; Dai, X.; Gao, Q. 3D-pharmacophore models
for selective A2A and A2B adenosine receptor antagonists. J. Chem.
Inf. Model. 2007, 47, 613–625.
(23) Richardson, C. M.; Gillespie, R. J.; Williamson, D. S.; Jordan, A. M.;
Fink, A.; Knight, A. R.; Sellwood, D. M.; Misra, A. Identification of
non-furan containing A2A antagonists using database mining and
molecular similarity approaches. Bioorg. Med. Chem. Lett. 2006, 16,
5993–5997.
(24) Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.;
Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.;
Takeshita, H. I. K.; Niki, T.; Umeda, M.; Bacon, K. B.; Zeigelbauer,
K. B.; Lowinger, T. B. Discovery of Novel and Selective Ikk-ꢀ Serine-
Threonine Protein Kinase Inhibitors Part 1. Bioorg. Med. Chem. 2003,
13, 913–918.
(25) Kambe, S.; Saito, K. A Simple Method for the Preparation of 2-Amino-
4-Aryl-3-Cyanopyridines by the Condensation of Malononitrile with
Aromatic Aldehydes and Alkyl Ketones in the Presence of Ammonium
Acetate. Synthesis 1980, 6, 366–368.
(26) Cowart, M.; Lee, C.-H.; Gfesser, G. A.; Bayburt, E. K.; Bhagwat,
S. S.; Stewart, A. O.; Yu, H.; Kohlhaas, K. L.; McGaraughty, S.;
Wismer, C. T.; Mikusa, J.; Zhu, C.; Alexander, K. M.; Jarvis, M. F.;
Kowaluk, E. A. Structure-Activity Studies of 5-Substituted Pyri-
dopyrimidines as Adenosine Kinase Inhibitors. Bioorg. Med. Chem.
Lett. 2001, 11, 83–86.
(27) Topliss, J. G. Utilization of Operational Schemes for Analog Synthesis
in Drug Design. J. Med. Chem. 1972, 15, 1006–1011.
(28) Anderson, D. R.; Stehle, N. W.; Kolodziej, S. A.; Reinhard, E. J.
Preparation of aminocyanopyridines as inhibitors of mitogen activated
protein kinase-activated protein kinase-2 for treating TNFR mediated
diseases. WO 2004/055015 A1, 2004.
(4) Hockemeyer, J.; Burbiel, J. C.; Muller, C. E. Multigram-Scale
Syntheses, Stability and Photoreactions of A2A Adenosine Receptor
Antagonists with 8-Styrylxanthine Structure: Potential Drug for
Parkinson’s Disease. J. Org. Chem. 2004, 69, 3308–3318.
(5) Ongini, E.; Dionisotti, S.; Gessi, S.; Irenius, E.; Fredholm, B. B.
Comparison of CGS15943, ZM 241385 and SCH 58261 as antagonists
at human adenosine receptors. Naunyn-Schmiedebergs Arch. Phar-
macol. 1999, 359, 7–10.
(6) Matasi, J. J.; Caldwell, J. P.; Hao, J.; Neustadt, B.; Arik, L.; Foster,
C. J.; Lachow, J. The discovery and synthesis of novel adenosine
receptor (A2A) antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 1333–
1336.
(7) Dowling, J. E; Vessels, J. T.; Haque, S.; Chang, H. X; van Vloten, K;
Kumaravel, G; Engber, T.; Jin, X.; Phadke, D.; Wang, J.; E., A.; Petter,
R. C. Synthesis of [1,2,4]triazolo[1,5-R]pyrazines as adenosine A2A
receptor antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 4809–4813.
(8) Matasi, J. J.; Caldwell, J. P.; Zhang, H.; Fawzi, A.; Cohen-Willams,
M.E.;Varty,G.B.;Tulshian,D.B.2-(2-Furanyl)-7-phenyl[1,2,4]triazolo[1,5-
c]pyrimidin-5-amine analogs: Highly potent, orally active, adenosine
A2A antagonists. Part 1. Bioorg. Med. Chem. Lett. 2005, 15, 3670–
3674.
(9) Matasi, J. J.; Caldwell, J. P.; Zhang, H.; Fawzi, A.; Higgins, G. A.;
Cohen-Willams, M. E.; Varty, G. B.; Tulshian, D. B. 2-(2-Furanyl)-
7-phenyl[1,2,4]triazolo[1,5-c]pyrimidin-5-amine analogs as adenosine
A2A antagonists: The successful reduction of hERG activity. Part 2.
Bioorg. Med. Chem. Lett. 2005, 15, 3675–3678.
(10) Yao, G.; S., H.; Sha, L.; Kumaravel, G.; Wang, J.; Engber, T. M.;
Whalley, E. T.; Conlon, P. R.; Chang, H.; Keisman, W. F.; Petter,
R. C. Synthesis of alkyne derivatives of a novel triazolopyrazine as
A2A adenosine receptor antagonists. Bioorg. Med. Chem. Lett. 2005,
15, 511–515.
(11) Hairruo, P.; Kumaravel, G.; Sha, L.; Wang, J.; van Vlijmen, H.;
Bohnert, T.; Huang, C.; Vu, C. B.; Ensinger, C. L.; Chang, H.; Engber,
T. M.; Whalley, E. T.; Petter, R. C. Novel Bicyclic Piperazine
Derivatives of Triazolotriazine and Triazolopurimidines as Highly
Potent and Selective Adenosine A2A Receptor Antagonists. J. Med.
Chem. 2004, 47, 6218–6229.
(12) Collotta, V.; Catarazi, D.; Varano, F.; Filacchioni, G.; Martini, C.;
Trincavelli, L.; Lucacchini, A. Synthesis of 4-Amino-6-(hetero)ary-
lalkylamino-1,2,4-triazolo[4,3,-R]quinoxalin-1-one Derivatives as Po-
tent A2A Adenosine Receptor Antagonists. Bioorg. Med. Chem. 2003,
11, 5509–5518.
(29) Lameijer, E. W.; Kok, J. N.; Ba¨ck, T; IJzerman, A. P. The Molecule
Evoluator. An interactive evolutionary algorithm for the design of drug-
like molecules. J. Chem. Inf. Model. 2006, 46, 545–552.
(30) Lameijer, E. W.; Tromp, R. A.; Spanjersberg, R. F.; Brussee, J.;
IJzerman, A. P. Designing active template molecules by combining
computational de novo design and human chemist’s expertise. J. Med.
Chem. 2007, 50, 1925–1932.
(31) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. AdV. Drug
DeliVery ReV. 1997, 23, 3–25.
JM701594Y