10.1002/chem.201903426
Chemistry - A European Journal
COMMUNICATION
[6]
a) Y. Ashikari, A. Shimizu, T. Nokami, J. Yoshida, J. Am. Chem. Soc.
2013, 135, 16070; b) A. Shimizu, R. Hayashi, Y. Ashikari, T. Nokami, J.
Yoshida, Beilstein J. Org. Chem. 2015, 11, 242; c) R. Hayashi, A.
Shimizu, J. A. Daives, Y. Ishizaki, C. Willis, J. Yoshida, Angew. Chem.
Int. Ed. 2018, 57, 12891; Angew. Chem. 2018, 130, 13073.
Hartman, K. F. Jensen, Lab Chip 2009, 9, 2495; f) J. P. McMullen, K. F.
Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19; g) J. Yoshida, H. Kim, A.
Nagaki, ChemSusChem 2011, 4, 331; h) C. Wiles, P. Watts, Green
Chem. 2012, 14, 38; i) A. Kirschining, L. Kupracz, J. Hartwig, Chem. Lett.
2012, 41, 562; j) D. T. McQuade, P. H. Seeberger, J. Org. Chem. 2013,
78, 6384; k) K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, A. J. deMello,
Nat. Chem. 2013, 5, 905; l) J. C. Pastre, D. L. Browne, S. V. Ley, Chem.
Soc. Rev. 2013, 42, 8849; m) I. R. Baxendale, J. Chem. Technol.
Biotechnol. 2013, 88, 519; n) T. Fukuyama, T. Totoki, I. Ryu, Green
Chem. 2014, 16, 2042; o) H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel,
R. Luque, T. Noël, Chem. Soc. Rev. 2016, 45, 83; p) D. Cambié, C.
Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116,
10276; q) M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger,
Chem. Rev. 2017, 117, 11796.
[7]
a) A. J. Mancuso, D. Swern, Synthesis 1981, 165; b) N. Kornblum, J. W.
Powers, G. J. Anderson, W. J. Jones, H. O. Larson, O. Levand, W. M.
Weaver, J. Am. Chem. Soc. 1957, 79, 6562; c) Y. Ashikari, T. Nokami, J.
Yoshida, J. Am. Chem. Soc. 2011, 133, 11840; d) Y. Ashikari, T. Nokami,
J. Yoshida, Org. Lett. 2012, 14, 938; e) Y. Ashikari, T. Nokami, J. Yoshida,
Org. Biomol. Chem. 2013, 11, 3322.
[8]
[9]
a) J. Yoshida, K. Saito, T. Nokami, A. Nagaki, Synlett 2011, 9, 1189; b)
J. Yoshida, A. Shimizu, Y. Ashikari, T. Morofuji, R. Hayashi, T. Nokami,
A. Nagaki, Bull. Chem. Soc. Jpn. 2015, 88, 763.
a) K. Liu, D.-P. Li, S.-F. Zhou, X.-Q. Pan, A. Shoberu, J.-P. Zou,
Tetrahedron 2015, 71, 4031; b) A. K. Yadav, K. N. Singh, Chem.
Commun. 2018, 54, 1976; c) C. Zheng, Y. Liu, J. Hong, S. Huang, W.
Zhang, Y. Yang, G. Fang, Synlett 2019, 30, 1324.
[15] Some selected recent examples: a) S. Fuse, Y. Mifune, T. Takahashi,
Angew. Chem. Int. Ed. 2014, 53, 851; Angew. Chem. 2014, 126, 870; b)
Z. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 3353; Angew.
Chem. 2014, 126, 3421; c) A. Nagaki, Y. Takahashi, J. Yoshida, Chem.
Eur. J. 2014, 20, 7931; d) M. Chen, S. Ichikawa, S. L. Buchwald, Angew.
Chem. Int. Ed. 2015, 54, 263; Angew. Chem. 2015, 127, 265; e) S. Fuse,
Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun. 2016, 7, 13491; f) A.
Nagaki, Y. Takahashi, J. Yoshida, Angew. Chem. Int. Ed. 2016, 55, 5327;
Angew. Chem. 2016, 128, 5413; g) H. Seo, M. H. Katcher, T. F. Jamison,
Nat. Chem. 2017, 9, 453; h) G. Parisi, M. Colella, S. Monticelli, G.
Romanazzi, W. Holzer, T. Langer, L. Degennaro, V. Pace, R. Luisi, J.
Am. Chem. Soc. 2017, 139, 13648; i) S. Inuki, K. Sato, T. Fukuyama, I.
Ryu, Y. Fujimoto, J. Org. Chem. 2017, 82, 1248; j) A. Nagaki, H.
Yamashita, K. Hirose, Y. Tsuchihashi, J. Yoshida, Angew. Chem. Int. Ed.
2019, 58, 4027; Angew. Chem. 2019, 131, 40670; k) M. Islam, B. M.
Kariuki, Z. Shafiq, T. Wirth, N. Ahmed, Chem. Eur. J. 2019, 1371.
[16] Some examples of cation flow synthesis: a) A. Nagaki, M. Togai, S. Suga,
N. Aoki, K. Mae, J. Yoshida, J. Am. Chem. Soc. 2005, 127, 11666; b) K.
Saito, K. Ueoka, K. Matsumoto, S. Suga, T. Nokami, J. Yoshida, Angew.
Chem. Int. Ed. 2011, 50, 5153; Angew. Chem. 2011, 123, 5259; c) A.
Nagaki, M. Takumi, Y. Tani, J. Yoshida, Tetrahedron 2015, 71, 5973; d)
Y. Tani, M. Takumi, S. Moronaga, A. Nagaki, J. Yoshida, Eur. Poly. J.
2016, 80, 227.
[10] K. Matsumoto, Y. Kozuki, Y. Ashikari, S. Suga, S. Kashimura, J. Yoshida,
Tetrahedron Lett. 2012, 53, 1916.
[11] a) K. Matsumoto, S. Fujie, S. Suga, T. Nokami, J. Yoshida, Chem.
Commun. 2009, 5448; b) S. Fujie, K. Matsumoto, S. Suga, J. Yoshida,
Chem. Lett. 2009, 38, 1186; c) K. Matsumoto, T. Sanada, H. Shimazaki,
K. Shimada, S. Hagiwara, S. Fujie, Y. Ashikari, S. Suga, S. Kashimura,
J. Yoshida, Asian J. Org. Chem. 2013, 2, 325.
[12] Cationic oxo-thiolation of styrenes in a trace yield has been reported; A.
Levy, J. Y. Becker, Electrochim. Acta 2015, 178, 294.
[13] Books on flow microreactor synthesis: a) W. Ehrfeld, V. Hessel, H. Löwe,
Microreactors, Wiley-VCH, Weinheim, 2000; b) V. Hessel, S. Hardt, H.
Löwe, Chemical Micro Process Engineering, Wiely-VCH, Weinheim,
2004; c) J. Yoshida, Flash Chemistry. Fast Organic Synthesis in
Microsystems, Wiley-Blackwell, Oxford, 2008; d) Micro Precess
Engineering; (Eds.: V. Hessel, A. Renken, J. C. Schouten, J. Yoshida),
Wiley-Blackwell, Oxford, 2009; e) Microreactors in Organic Chemistry
and Catalysis, 2nd ed. (Ed.: T. Wirth), Wiley, Hoboken, 2013; f)
Microreactors in Preparative Chemistry (Ed.: W. Reschetilowski), Wiley-
VCH, Weinheim, 2013; g) F. Darvas, V. Hessel, G. Dorman, Flow
Chemistry, DeGruyter: Berlin, 2014; h) J. Yoshida, Basics of Flow
Microreactor Synthesis, Springer, Tokyo, 2015; i) Organometallic Flow
Chemistry (Ed.: T. Noël), Springer, Basel, 2016.
[17] If the deprotonation was not completed, the corresponding alcohol
should be obtained. See ref 7d.
[18] a) G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068; b) A.
G. M. Barrett, T.-K. Ma, T. Mies, Synthesis 2019, 51, 67.
[14] Reviews on flow microreactor synthesis: a) B. P. Mason, K. E. Price, J.
L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107,
2300; b) B. Ahmed-Omer, J. C. Brandt, T. Wirth, Org. Biomol. Chem.
2007, 5, 733; c) P. Watts, C. Wiles, Chem. Commun. 2007, 443; d) T.
Fukuyama, M. T. Rahman, M. Sato, I. Ryu, Synlett 2008, 151; e) R. L.
This article is protected by copyright. All rights reserved.