METAL CATION COMPLEXATION BY NOVEL ꢀ/ꢁ-TETRAPEPTIDES
peptide where the b-amino acid residue constitutes a ‘side chain’
(Fig. 8).
graduate fellowships to T. G., J. A., and Y. B. The authors are also
grateful to M. Parra-Hake for useful discussions.
By the same token, tight Mg2þ ion (ionic radius
for Mg2þ ¼ 72 pm)[64] affords a pentacoordinated adduct with
a/b-tetrapeptide 12. In particular, Mg2þ binds to the four
available carbonyl groups as well as the amino group on the
b-amino acid residue, b3-hPhg. This coordination gives rise to a
drastically folded conformation (Fig. 9).[66,67]
Transition metals Cu2þ and Zn2þ are predicted to form
complexes with a/b-tP 12 that resemble those with Ca2þ
and Mg2þ. Thus, adduct a/b-tP 12 ꢂ Cu2þ presents partial folding
as a consequence of the coordination of the Cu2þ ion with the
carbonyl groups on the terminal a-Phe and the internal peptidic
carbonyls. Interestingly, the calculated conformation of the a/
b-tP 12 ꢂ Cu2þ complex exhibits significant steric hindrance
among the substituents on the peptide, and the anticipated
repulsive interaction may be responsible for the low affinity of the
complex observed in the experimental ESI-MS study (as
described above).
Finally, the adduct arising from coordination between a/
b-tetrapeptide 12 and transition metal Zn2þ shows a distorted
tetrahedral core with the metal bound to both the carbonyl and
amino groups of the b-amino acid residue in addition to the
carbonyl of the inside phenylalanine residue as well as the
carboxylate group of the terminal phenylalanine residue (Fig. 11).
This molecular structure suggests several unfavorable steric
interactions among the a-Phe-a-Phe segment, and such repulsive
effects may be responsible for the experimentally observed low
abundance of [a/b-tP 12 ꢂ Zn2þ] complex.
REFERENCES
[1] D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiv. 2004, 1,
1111–1239.
[2] M. A. Gelman, S. H. Gellman, in Second Edition of Enantioselective
Synthesis of b-Amino Acids (Eds: E. Juaristi, V. A. Soloshonok ),
Wiley-VCH, New York, 2005.
[3] S. I. Klein, M. Czekaj, B. F. Molino, V. Chu, Bioorg. Med. Chem. Lett. 1997,
7, 1773–1778.
[4] G. Cardillo, L. Gentilucci, P. Melchiorre, S. Spampinato, Bioorg. Med.
Chem. Lett. 2000, 10, 2755–2758.
[5] See, also: S. Sagan, T. Milcent, R. Ponsinet, O. Convert, O. Tasseau, G.
Chassaing, S. Lavielle, O. Lequin, Eur. J. Biochem. 2003, 270, 939–
949.
[6] J. Venkatraman, S. C. Shankaramma, P. Balaram, Chem. Rev. 2001, 101,
3131–3152.
[7] V. J. Hruby, Nat. Rev. Drug Discov. 2002, 1, 847–858.
[8] M. R. Busch, C. E. Ho, Biophys. Chem. 1990, 37, 313–322.
[9] C. Chothia, A. M. Lesk, G. G. Dodson, D. C. Hodgkin, Nature 1983, 302,
500–505.
[10] E. Cerasoli, S. M. Kelly, J. R. Coggins, A. J. Lapthorn, D. T. Clarke, N. C.
Price, Biochim. Biophys. Acta 2003, 1648, 43–54.
[11] Y. Goto, N. Takahashi, A. L. Fink, Biochemistry 1990, 29, 3480–3488.
[12] R. L. Baldwin, Biophys. J. 1996, 71, 2056–2063.
[13] T. Imai, M. Kinoshita, F. Hirata, Bull. Chem. Soc. Jpn. 2000, 73,
1113–1122.
[14] G. Platt, M. S. Searle, C. W. Chung, Chem. Commun. 2001, 1162–1163.
[15] F. Rossi, G. Lelais, D. Seebach, Helv. Chim. Acta 2003, 86, 2653–2661.
[16] S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University
Science Books: Mill Valley, California, 1994.
[17] B. A. Cerda, C. Wesdemiotis, J. Am. Chem. Soc. 1996, 118,
11884–11892.
[18] B. A. Cerda, S. Hoyau, G. Ohanessian, C. Wesdemiotis, J. Am. Chem.
Soc. 1998, 120, 2437–2448.
Summary
Thirty-four novel a/b-tetrapeptides containing both a and b
amino acid residues (a/b-tetrapeptides 1–34) have been
prepared by solid-phase synthesis and using in-parallel meth-
odology. According to the results from analysis of mixtures of
representative a/b-tetrapeptides 12, 18, and 31 in a methanolic
solution containing a mixture of metal ions, it was confirmed
that the ESI-MS method allows the determination of a/
b-tetrapeptide-metal complex formation and the relative affinity
toward specific metal ions. In the case of a/b-tetrapeptides 12
and 18, where the b-amino acid is located at the amino group
terminus or in the inner section, it is observed then that the
relative affinity among the alkali metal mixture is Naþ > Kþ > Liþ,
whereas the relative abundances of adducts produced in the
presence of divalent alkaline earth metals were Mg2þ > Ca2þ. On
the other hand, for transition metals Cu2þ and Zn2þ a/
b-tetrapeptide 12 showed similar affinity whereas the trend
for a/b-tetrapeptide 18 was Cu2þ > Zn2þ. In the case of a/
b-tetrapeptide 31, where the b-amino acid is located at the
carboxylic group terminus the relative affinity among the alkali
metal mixture is again Naþ > Kþ > Liþ. Interestingly, among
divalent metal ions a very large affinity toward Cu2þ and Zn2þ is
observed. Computational modeling (DFT, 6-311þþG level)
provides useful information regarding the likely coordination
sites as well as the conformational changes induced by the metal.
[19] K. Wang, G. W. Gokel, J. Org. Chem. 1996, 61, 4693–4697.
[20] T. J. D. Jørgensen, P. Roepstorff, A. J. R. Heck, Anal. Chem. 1998, 70,
4427–4432.
[21] S. M. Blair, E. C. Kempen, J. S. Brodbelt, J. Am. Soc. Mass Spectrom.
1998, 9, 1049–1059.
[22] E. Kempen, J. S. Brodbelt, Anal. Chem. 2000, 72, 5411–5416.
[23] A. P. Marchand, Z. Huang, H. Lai, A. S. McKim, J. S. Brodbelt, S. Williams,
Heterocycles 2004, 62, 279–296.
[24] L. A. Paquette, P. R. Selvaraj, K. M. Keller, J. S. Brodbelt, Tetrahedron
2005, 61, 231–240.
[25] Y. Ye, M. Liu, J. L. F. Kao, G. R. Marshall, Biopolymers 2006, 84, 472–
489.
[26] R. P. Grese, R. L. Cerny, M. L. Gross, J. Am. Chem. Soc. 1989, 111,
2835–2842.
[27] P. Hu, M. L. Gross, J. Am. Chem. Soc. 1992, 114, 9161–9169.
[28] T. D. Veenstra, Biophys. Chem. 1999, 79, 63–79.
[29] C. A. Schalley, Mass Spectrom. Rev. 2001, 20, 253–309.
[30] R. Srikanth, P. N. Reddy, R. Srinivas, G. V. M. Sharma, K. R. Reddy, P. R.
Krishna, Rapid Commun. Mass Spectrom. 2004, 18, 3041–3050.
[31] S. G. Davies, N. M. Garrido, O. Ichihara, L. A. S. Walters, J. Chem. Soc.
Chem. Commun. 1993, 1153–1155.
[32] J. Escalante, E. Juaristi, Tetrahedron Lett. 1995, 36, 4397–4400.
[33] S. G. Davies, O. Ichihara, Tetrahedron Asymmetry 1991, 2, 183–
186.
[34] S. G. Davies, A. D. Smith, P. D. Price, Tetrahedron Asymmetry 2005, 16,
2833–2891.
[35] Eds: W. C. Chan, P. D. White, Fmoc Solid Plase Synthesis: A Practical
Approach, Oxford University Press, Oxford, UK, 2000.
´
[36] M. Royo, J. Farrera-Sinfreu, L. Sole, F. Albericio, Tetrahedron Lett. 2002,
43, 2029–2032.
[37] H. S. Lee, J. S. Park, B. M. Kim, S. H. Gellman, J. Org. Chem. 2003, 68,
1575–1578.
[38] MMFF, Merck Molecular Force Field, Merck Research Laboratories,
Rahway, New Jersey.
[39] PC Spartan Pro, Wavefunction Inc, Irvine, CA, USA.
Acknowledgements
´
We are indebted to Conacyt and SEP, Mexico, for financial support
via grant 45157-Q and SEP-2004-CO1-44835, as well as for
J. Phys. Org. Chem. 2008, 20 349–358
Copyright ß 2008 John Wiley & Sons, Ltd.